cho tam giác ABC cóAB=6 cm,BC=8cm,^B=2^C. TÍNH AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(BC^2=AB^2+AC^2\Leftrightarrow100=64+36\)(luôn đúng)
vậy tam giác ABC vuông tại A
tâm đường tròn nội tiếp tam giác ABC vuông tại A là trung điểm cạnh huyền
hay AI = IB = IC = BC/2 = 5
kẻ đường cao AH ( H ϵ BC)
trong tam giác vuông AHC:
\(\sin C\) = \(\dfrac{AH}{AC}\) ⇒ AH = AC.\(\sin C\) = 6\(\sin\left(30\right)\) = 3 cm
HC = \(\sqrt{AC^2-AH^2}\) = \(\sqrt{6^2-3^2}\) = 3\(\sqrt{3}\) cm
Trong tam giác vuông BHC:
BH = \(\sqrt{AB^2-AH^2}\) = \(\sqrt{5^2-3^2}\) = 4 cm
BC = HC + BH = 4 + 3\(\sqrt{3}\)
a, xét tam giác abc vuông tại h
theo đlí Pitago co
\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
vậy bc=10cm
b,xét tam giác abcvà tam giác hab có
góc bac= góc bha= 90 độ(gt)
góc b chung
=>tam giác abc đồng dạng vs tam giác hba(gg)
c,từ cmb có tam giác abc đồng dạng vs tam giác hba
=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)
a) Dựa vào định lý Pytago , ta tính được BC = 10 cm
b) tam giác HBA đồng dạng với tam giác ABC theo trường hợp g.g
c) từ hai tam giác đồng dạng nêu trên
=>\(\frac{BH}{AB}=\frac{AB}{BC}\)
=>\(AB^2=BH.BC\left(đpcm\right)\)
ta tính được BH= 3.6 cm
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a, ta có : AB2 + AC2 = 62 + 82 =100
BC2 = 100
=> 100 = 100 hay AB2 + AC2 = BC2 => TAM GIÁC ABC CÓ 3 CẠNH AB, AC, BC LÀ TAM GIÁC VUÔNG (ĐL PY-TA-GO ĐẢO)
VẬY...
k cho mình nha, mình đánh mệt lắm