tinh tong 1x2+2x3+3x4+.............+99x100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee2
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3
=> A = 333300
A = 1x2 + 2x3 + ... + 99x100
3A = 1x2x3 + 2x3x(4-1) + ... + 99x100x(101-98)
3A = 1x2x3 + 2x3x4 - 1x2x3 + ... + 99x100x101 - 98x99x100
3A = 99x100x101
3A = 999900
A = 333300
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2.99}{100}\)
\(A=\frac{99}{50}=1\frac{49}{50}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)=2.\frac{99}{100}\)
\(=\frac{99}{50}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1 /2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
1 \(\times\) 2 \(\times\) 3 = 1 \(\times\) 2 \(\times\) 3
2 \(\times\) 3 \(\times\) 3 = 2 \(\times\) 3 \(\times\) ( 4 -1) = 2 \(\times\) 3 \(\times\) 4 - 1 \(\times\) 2 \(\times\) 3
3 \(\times\) 4 \(\times\) 3 = 3 \(\times\) 4 \(\times\) ( 5 -2) = 3 \(\times\) 4 \(\times\) 5 - 2 \(\times\) 3 \(\times\) 4
4 \(\times\) 5 \(\times\) 3 = 4 \(\times\) 5 \(\times\) ( 6- 3) = 4 \(\times\) 5 \(\times\) 6 - 3 \(\times\) 4 \(\times\) 5
..................................................................................
99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)(101-98) =99\(\times\)100\(\times\)101 - 98\(\times\)99\(\times\)100
Cộng vế với vế ta được:
1\(\times\)2\(\times\)3 + 2\(\times\)3\(\times\)3 + 3\(\times\)4\(\times\)3+ ...+99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)101
(1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+99\(\times\)100)\(\times\)3 = 99\(\times\)100\(\times\)101
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = (99 \(\times\)100 \(\times\)101):3
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = 333 300
1x 2 + 2 x 3 + 3 x 4 + ...+ 99 x 100
Ta có:
1 x 2 x 3 = 1 x 2 x 3
2 x 3 x 3 = 2 x 3 x ( 4 - 1) = 2 x 3 x 4 - 1 x 2 x 3
3 x 4 x 3 = 3 x 4 x ( 5 - 2) = 3 x 4 x 5 - 2 x 3 x 4
........................................................= ........................................
99 x 100 x 3 = 99 x 100 x (101 - 98) = 99 x 100 x 101 - 99 x 100 x 98
Cộng vế với vế ta có:
1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 +...+ 99 x 100 x 3 = 99 x100 x 101
(1 x 2 + 2 x 3 + 3 x 4 +...+ 99 x 100) x 3 = 99 x 100 x 101
1 x 2 + 2 x 3 + 3 x 4 +...+ 99 x 100 = \(\dfrac{99\times100\times101}{3}\)
1 x 2 + 2 x 3 + 3 x 4 + ....+ 99 x 100 = 333300
Đặt S = 1 x 2 + 2 x 3 + ......... + 99 x100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ...... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ...... + 99 x 100 x 101 - 98 x 99 x 100
3S = ( 1 x 2 x 3 - 1 x 2 x 3) +.... + (98 x 99 x 100 - 98 x 99 x 100) + 99 x 100 x 101
3S = 99 x 100 x 101
S = 99 x 100 x 101 : 3 = 333300