P(x) = 2×2 + 2x – 6×2 + 4×3 + 2 – x3
Q(x) = 3 – 2×4 + 3x + 2×4 + 3×3 – x
a) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến
b) Tìm đa thức C(x) biết C(x) = P(x) + Q(x)
c) Chứng minh đa thức D(x) = Q(x) – P(x) vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)
\(Q\left(x\right)=3x^3+2x+3\)
\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)
\(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)
\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)
\(Q\left(x\right)=3x^3\) \(2x+3\)
\(P\left(x\right)=3x^3-4x^2+2x+2\)
\(Q\left(x\right)-P\left(x\right)=\) \(4x^2\) \(+1\)
\(\Rightarrow D\left(x\right)=4x^2+1\)
Để \(D\left(x\right)\)có nghiệm thì:
\(D\left(x\right)=0\)
\(\Rightarrow4x^2+1=0\)
Mà \(4x^2\ge0\)
\(\Rightarrow4x^2+1\ge1\)
\(\Rightarrow D\left(x\right)\ge1\)
\(\Rightarrow D\left(x\right)>0\)
Vậy đa thức \(D\left(x\right)\)vô nghiệm
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
\(a,Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(3x-3x\right)+1\\ =3x^4+2x^2+1\\ b,Q\left(x\right)=0\\ \Leftrightarrow3x^4+2x^2+1=0\\ \Delta=b^2-4ac=2^2-4.3.1=-8< 0\)
Vậy Q(x) không có nghiệm
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a)
`P(x)=7x^3+(4x^2-3x^2)-x+5=7x^3+x^2-x+5`
`Q(x)=-7x^3-x^2+2x+(6-8)=-7x^3-x^2+2x-2`
b)
`P(x)+Q(x) = 7x^3+x^2-x+5-7x^3-x^2+2x-2`
`=(7x^3-7x^3)+(x^2-x^2)+(2x-x)+(5-2)`
`=x+3`
`P(x)-Q(x)=7x^3+x^2-x+5-(-7x^3-x^2+2x-2)`
`= 7x^3+x^2-x+5+7x^3+x^2-2x+2`
`=(7x^3+7x^3)+(x^2+x^2)-(x+2x)+(5+2)`
`=14x^3+2x^2-3x+7`
c) `A(x) = P(x)+Q(x)=x+3`
`A(x)=0 <=> x+3=0 <=>x=-3`.
a)\(P\left(x\right)=2.2+2x-6.2+4.3+2-3x\)
\(=4+2x-12+12+2-3x\)
\(=\left(2x-3x\right)+\left(4+12+2\right)\)
\(=\left(-x\right)+18\)
\(Q\left(x\right)=3-2.4+3x+2.4+3.3-x\)
\(=3-8+3x+8+9-x\)
\(=\left(3x-x\right)+\left(3-8+8+9\right)\)
\(=2x+12\)
b)\(C\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Rightarrow C\left(x\right)=\left(-x+18\right)+\left(2x+12\right)\)
\(C\left(x\right)=-x+18+2x+12\)
\(C\left(x\right)=\left(-x+2x\right)+\left(18+12\right)\)
\(C\left(x\right)=x+26\)
c)\(D\left(x\right)=Q\left(x\right)-P\left(x\right)\)
\(\Rightarrow D\left(x\right)=\left(2x+12\right)-\left(-x+18\right)=\)
\(D\left(x\right)=2x+12+x+18\)
\(D\left(x\right)=\left(2x+x\right)+\left(12+18\right)\)
\(D\left(x\right)=3x+26\)
Có \(3x\) luôn \(\ge0\) và \(\le0\) với mọi x.
Lại có 26>0; \(26⋮̸3\)
\(\Rightarrow\)D(x) vô nghiệm