Cho ba số x, y,z thỏa mãn x+2/2=y+3/3=z+4/4 và 2x+y+z=11 .Tìm x^2+y^2+z^2=..................
Xin vui lòng cho cách giải cụ thể !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
Ta có : \(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)=\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)=\(\frac{45}{9}\)=5
=> x = 11
y = 17
z = 23
=> x + y + z = 11 + 17 + 23 = 51
1a.Ta có:
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=...
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2...
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16
câu 2:
bạn chép sai đề bài rồi hay sao ấy
đề bài phải thế này mới đúng:cho đk như bạn.cmr:(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
giải theo tỉ lệ thức là ra ngay đấy mà.Cố lên bạn nhé!
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Ta co x+2/2=y+3/3=z+4/4 hay x+1=y+1=z+1 => x=y=z
Suy ra: 2x+y+z=11 hay 2x+x+x=11 => 4x=11 => x=11/4
Vay: x^2+y^2+z^2 = (11/4)^2+(11/4)^2+(11/4)^2 =121/16 . 3 = 363/16