Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ (x - 1)/2 = (y - 2)/3 = (z - 3)/4
=> 2(x - 1)/4 = 3(y - 2)/9 = (z - 3)/4 (Nhân cả tử và mẫu tỷ số thứ nhất với 2, tỷ số thứ hai với 3)
=> (2x - 2)/4 = (3y - 6)/9 = (z - 3)/4
Áp dụng t/c DTSBN ta có:
(2x - 2)/4 = (3y - 6)/9 = (z - 3)/4 = (2x - 2 + 3y - 6 - z + 3)/(4 + 9 - 4) = (2x + 3y - z - 5)/9 = (95 - 5)/9 = 10
Từ (2x - 2)/4 = 10 => 2x - 2 = 40 => 2x = 42 => x = 21
Từ (3y - 6)/9 = 10 => 3y - 6 = 90 => 3y = 96 => y = 32
Từ (z - 3)/4 = 10 => z - 3 = 40 => z = 43
Vậy (x;y;z) = (21; 32; 43)
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{-2y+4}{-6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có \(x=3;y=5;z=7\)
\(\frac{x-1}{2}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)=\(\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
\(\Rightarrow\frac{x-1}{2}=1\Rightarrow x=3\);\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\);\(\frac{z-3}{4}=1\Rightarrow x-3=4\Rightarrow z=7\)
Vậy \(x=3;y=5;z=7\)
(x - 1)/2 = (y - 2)/3 = (z - 3)/4
=> (x - 1)/2 = 2(y - 2)/6 = 3(z - 3)/12 = [(x - 1) - 2(y - 2) + 3(z - 3)]/(2 - 6 + 12) = [(x - 2y + 3z) - 6]/8
Vì x - 2y + 3z = 14
=> (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = (14 - 6)/8 = 1
=> x = 3, y = 5, z = 7
Vay khi : x+y+z=3+5+7=15
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)
hay
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\) và \(x-2y+3z=-10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y-4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(9+1-4\right)}{8}=\frac{-10-6}{8}=-\frac{16}{8}=-2\)
\(\Leftrightarrow\begin{cases}x-1=-2.2=-4\Rightarrow x=-4+1=-3\\y-2=-2.3=-6\Rightarrow y=-6+2=-4\\z-3=-2.4=-8\Rightarrow z=-8+3=-5\end{cases}\)
Khi đó : \(x+y+z=\left(-3\right)+\left(-4\right)+\left(-5\right)=-12\)
Có: \(\frac{y-2}{3}=\frac{2y-4}{6};\frac{z-3}{4}=\frac{3z-9}{12}\)
\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Vì \(\frac{x-1}{2}=1\Rightarrow x-1=1.2=2\Rightarrow x=2+1=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3.1=3\Rightarrow y=3+2=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=1.4=4\Rightarrow z=4+3=7\)
Tự kết luận
Áp dụng t/c vủa dãy tỉ số bằng nhau ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{\left(x-2y+3z\right)-1+4-9}{8}=\frac{14-6}{8}=1\)
=> x - 1 = 2; y - 2 = 3; z - 3 = 4
=> x = 3; y = 5; z = 7
Vậy...
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=14
=> \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)và x-2y+3z=14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)\(=\frac{x-2y+3z-14}{20}=\frac{14-14}{20}=0\)
Từ \(\frac{x-1}{2}=0=>x-1=0=>x=1\)
\(\frac{2y-4}{6}=0=>2y-4=0=>2y=4=>y=2\)
\(\frac{3z-9}{12}=0=>3z-9=0=>3z=9=>z=3\)
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)
hay
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\) và \(x-2y+3z=-10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y-4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(9+1-4\right)}{8}=\frac{-10-6}{8}=-\frac{16}{8}=-2\)
\(\Leftrightarrow\begin{cases}x-1=-2.2=-4\Rightarrow x=-4+1=-3\\y-2=-2.3=-6\Rightarrow y=-6+2=-4\\z-3=-2.4=-8\Rightarrow z=-8+3=-5\end{cases}\)
Khi đó : \(x+y+z=\left(-3\right)+\left(-4\right)+\left(-5\right)=-12\)
Vậy ............