K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

n =10

19 tháng 1 2021

Phương trình đặc trưng\(x^2-18x+17=0\) có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=17\end{matrix}\right.\)

Do đó SHTQ của dãy có dạng: \(u_{n+1}=c_1.1^{n+1}+c_2.17^{n+1}\)

Lần lượt thay n=0; n=1 vô phương trình, ta được hệ:

\(\left\{{}\begin{matrix}c_1+17c_2=16\\c_1+289c_2=288\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c_1=-1\\c_2=1\end{matrix}\right.\)

\(\Rightarrow u_{n+1}=17^{n+1}-1\)

\(\Rightarrow u_n=17^n-1\)

\(\Rightarrow\dfrac{17^n-1}{2^{2020}}=1\)

Thôi, đến đây là chịu rồi :D Miss dạng chia có mũ rồi :((

21 tháng 1 2021

sao có thể biết cái phương trình đặc trưng thế bạn, ở cái dòng x2-18x+17 = 0 ý, chỉ mình với

Bài 2:

10^n có tổng các chữ số là 1

5^3 có tổng các chữ số là 8

=>10^n+5^3 có tổng các chữ số là 9

=>10^n+5^3 chia hết cho 9

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

17 tháng 5 2022

Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)

7 tháng 10 2017

1/

\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)

=> y/ 3 - 5 = 0 hoặc y/3 - 5 = 1

=> y/3 = 5 hoặc y/3 = 6

=> y = 15 hoặc y = 18

2/

d) \(\left(n^{54}\right)^2=n\)

=> n = 0 hoặc n=1