Câu hỏi : Cho C= 3 + 32 + 33 + 34 +....+3100
Chứng tỏ C chia hết cho 40.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+.........+3^{97}.40\)
\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)
\(\Rightarrow A⋮40\)( 1 )
Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)
\(\Rightarrow A⋮120\)
Vậy \(A⋮120\)( ĐPCM )
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
B=30+31+32...+3100B=30+31+32...+3100
=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)
=30×13+33×13+...+398×13=30×13+33×13+...+398×13
=13×(30+33+...+3
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak
\(C=3+3^2+3^3+3^4+.....+3^{100}\)
\(\Leftrightarrow C=\left(3+3^2+3^3+3^4\right)+........+\left(3^{97}+3^{98}+^{99}+3^{100}\right)\)
\(\Leftrightarrow C=3\left(1+3+3^2+3^3\right)+......+3^{97}+\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow C=3.40+.....+3^{97}.40\)
\(\Leftrightarrow C=40.\left(3+...+3^{97}\right)\)
\(\Rightarrow C⋮40\left(dpcm\right)\)
_Vi hạ_
\(C=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8...++3^{97}+3^{98}+3^{99}+3^{100}\)
\(C=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(C=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(C=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{96}\right)\)
\(C=40.\left(3+3^5+...+3^{100}\right)⋮40\)
Vậy \(C⋮40\)