K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

18 tháng 10 2023

.

5 tháng 9 2017

Ta có

2(1+2)+23(1+2)+25(1+2)...299(1+2)

=3(2+23+25+..+299)

=> DPCM

5 tháng 9 2017

Ta có:

\(2^1+2^2+2^3+.....+2^{99}+2^{100}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+......+\left(2^{99}+2^{100}\right)\)

\(=2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{98}.\left(1+2\right)\)

\(=2.3+2^2.3+.....+2^{98}.3\)

\(=3.\left(2+2^2+....+2^{98}\right)⋮3\left(đpcm\right)\)

19 tháng 11 2014

=3+3^2+3^3+....+3^99+3^100

=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

=(1+3).3+(1+3).3^3.(1+3).3^5...(1+3).2^99

=4.3+4.3^3+4.3^5...4.2^99

Vậy,3+3^2+3^3+...+3^99+3^100 chia hết cho 4

19 tháng 11 2014

=3+3^2+3^3+....+3^99+3^100

=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

=(1+3).3+(1+3).3^3. (1+3).3^5...(1+3).2^99

=4 . 3 + 4 . 3^3 + 4 . 3^5...4.2^99

Vậy:3 + 3^2 + 3^3 +...+ 3^99 +3^100 chia hết cho 4

10 tháng 10 2017

Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi  nhóm có 3 số liên tiếp nhau.

Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)

\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)

\(=2+2.7+2^5.7+.....+2^{98}.7\)

\(\Rightarrow\)Tổng này chia 7 dư 2

10 tháng 10 2017

bài 1

 abcabc=abc.1001

có 1001chia hết cho 7 

=>abc.1001 chia hết cho 7

còn chia hết cho 11 và 13 thì tương tự

bài 2

A=(2100+299+298)+...+(24+23+22)+21

A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21

A=298.(22+21+1)+...+22.(22+21+1)+21

A=298.7+...+22.7+21

A=(298+22).7 +21

có 7 chia hết co 7

=>(298+22).7 chia hết cho 7

=>Achia 7 dư 21

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

4 tháng 1 2018

Ta có 62 = 31 . 2

Mà A = 2 + 22 + .... + 299 + 2100 \(⋮\)2                                                  ( 1 )

A =  2 + 22 + .... + 299 + 2100 

A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 22 + 2+ 24 ) + ... + 296 . ( 1 + 2 + 22 + 2+ 2

A = 2 . 31 + ... + 296 . 31 = 31 . ( 2 + ... + 296 ) \(⋮\)31                                       ( 2 )

Từ 1 và 2 => A chia hết cho 2 , A chia hết cho 31 => A chia hết cho 2 . 31 => A chia hết cho 62

Vậy A chia hết cho 62

4 tháng 1 2018

A=(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)

A=1.(2+22+23+24+25)+25(2+22+23+24+25)+...+295(2+22+23+24+25)

A= 1.62+25.62+...+295.62

A=62(1+25+...+295)

suy ra A chia hết cho 62

5 tháng 12 2016

A = 4 +42 + 43 + 44 + 45 +...+ 499 + 4100

    = (4 + 42) + (43 + 44) + (45 + 46) +...+ (499 + 4100)

    = 4 (1 + 4) +43 ( 1+ 4 ) + 45 ( 1 + 4 )+...+ 499 (1 + 4)

    = (1 + 4).(4 + 43 + 45 +...+ 499)

     = 5 ( 4 + 43 + 45 +...+499

Vì A có một thừa số là 5 nên chia hết cho 5