CMR: \(\left(7^n+1\right).\left(7^n-1\right)⋮3\)
cầu xin mn lm ơn giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)(x+3)(x+5)(x+7) + 15
= [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15.
Đặt x² + 8x + 11 = y (1) ta được :
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1)
= (x² + 8x + 12)(x² + 8x + 10).
Chúc bn học tốt!
P\(=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+.....+\dfrac{4033}{\left(2016.2017\right)^2}\) \(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+.......+\dfrac{4033}{2016^2.2017^2}\) \(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+....+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\) =1\(-\dfrac{1}{2017^2}\) Do `1\(-\dfrac{1}{2017^2}\) <1\(\Rightarrow\) P<1 ( ĐPCM)
P = \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+\dfrac{7}{\left(3.4\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)
P = \(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)
P = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)
P = \(1-\dfrac{1}{2017^2}\)
⇒ P < 1
⇒ ĐPCM
\(\left(1+\dfrac{7}{9}\right).\left(1+\dfrac{7}{20}\right).\left(1+\dfrac{7}{33}.\right)\left(1+\dfrac{7}{48}\right)...\left(1+\dfrac{7}{180}\right)\)
\(=\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}.\dfrac{55}{48}...\dfrac{7}{180}\)
\(=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}.\dfrac{5.11}{4.12}...\dfrac{11.17}{10.18}\)
\(=\dfrac{\left(2.3.4.5...11\right).\left(8.9.10.11...17\right)}{\left(1.2.3.4...10\right).\left(9.10.11.12...18\right)}\)
\(=\dfrac{11.8}{1.18}=\dfrac{88}{18}=\dfrac{44}{9}\)
ta có ;
\(\left(1+\dfrac{7}{9}\right)\cdot\left(1+\dfrac{7}{20}\right).\left(1+\dfrac{7}{33}\right)...\left(1+\dfrac{1}{180}\right)\)
=\(\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}....\dfrac{187}{180}\)
=\(\dfrac{8.2}{9.1}.\dfrac{9.3}{10.2}.\dfrac{10.4}{3.11}.\dfrac{11.5}{4.12}....\dfrac{17.11}{18.10}\)
=\(\dfrac{8.9.10.11.12.13.14.15.16.17.2.3.4.5.6.7.8.9.10.11}{9.10.11.12.13.14.15.16.17.18.1.2.3.4.5.6.7.8.9.10}\)
=\(\dfrac{8.11}{18}=\dfrac{88}{18}=\dfrac{44}{9}\)
trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
=> 7n;(7n+1);7n+2 có 1 số chia hết cho 3
vì 7n không chia hết cho 3
=>(7n+1) hoặc (7n+2) chia hết cho 3
=> (7n+1).(7n+2) chia hết cho 3
Áp dụng tính chất phân phối giữa phép nhân và phép cộng ta có :
\(\left(7^n+1\right).\left(7^n+2\right)=7^n.\left(1+2\right)\)
\(=7^n.3\)
\(\Rightarrow7^n.\left(1+2\right)⋮3\)
\(\Rightarrow\left(7^n+1\right).\left(7^n+2\right)⋮3\)(Đpcm)
Xét ba số tự nhiên liên tiếp là 17^n;17^n +1 và 17^n +2
Vì trong ba số liên tiếp Cómột số chia hết cho 3 mà 17^n Không chia hết cho 3 nên 17^n +1 cha hết cho 3 hoặc 17^n +2 chia hết cho 3. Do đó tích : A=(17^n +1)*(17^n +2) chia hết cho 3 với mọi n là số tự nhiên
Vậy A chia hết cho ba với mọi n là số tự nhiên
Ta có :
\(17^n+1=\left(17+1\right)\left(17^{n-1}-17^{n-2}+17^{n-3}-......+17^2-17+1\right)\)
\(=18\left(17^{n-1}-17^{n-2}+17^{n-3}-.....+17^2-17+1\right)⋮3\)
Do đó : \(\left(17^n+1\right)\left(17^n+2\right)⋮3\) (ĐPCM)
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n
= 3n(32+1) - (2n.22 +2n)
=3n . 10 - 2n .5
=3n.10 - 2n-1 .2 .5
= 3n.10 - 2n-1 .10
= 10(3n - 2n-1)
vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10
=> 3n+2 - 2n+2 +3n -2n chia hết cho 10
Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp
Lời giải:
* Thêm điều kiện $n$ là số tự nhiên.
Ký hiệu $\text{BS(6)}$ là bội số của $6$
Ta thấy:
\(7^n-1=(6+1)^n-1=\text{BS(6)}+1-1=\text{BS(6)}\vdots 3\)
\(\Rightarrow (7^n+1)(7^n-1)\vdots 3, \forall n\in\mathbb{N}\)
Em cảm ơn!