K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

a)

\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}=\frac{2(\sqrt{6}+2+\sqrt{6}-2)}{(\sqrt{6}-2)(\sqrt{6}+2)}+\frac{5\sqrt{6}}{6}\)

\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}=\frac{17\sqrt{6}}{6}\)

b)

\(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-(\sqrt{3}+\sqrt{2}-\sqrt{5})}{(\sqrt{3}+\sqrt{2}-\sqrt{5})(\sqrt{3}+\sqrt{2}+\sqrt{5})}\)

\(=\frac{2\sqrt{5}}{(\sqrt{3}+\sqrt{2})^2-5}=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

c)

\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)

\(=\left[\frac{\sqrt{2}(\sqrt{3}-1)}{1-\sqrt{3}}-\sqrt{5}\right].(\sqrt{5}-\sqrt{2})\)

\(=(-\sqrt{2}-\sqrt{5})(\sqrt{5}-\sqrt{2})=-(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})\)

\(=-(5-2)=-3\)

d)

\(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)

\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{1}{4}+\frac{2}{2\sqrt{6}}+\frac{1}{6}}\)

\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{(\frac{1}{2}-\frac{1}{\sqrt{6}})^2}\)

\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}(\frac{1}{2}-\frac{1}{\sqrt{6}})\)

\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{2\sqrt{3}}-\frac{1}{3\sqrt{2}}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}\)

23 tháng 8 2023

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

23 tháng 8 2023

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)

7 tháng 7 2019

\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}.\)

\(=\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}-1\right)}+\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}+1\right)}+\frac{5}{\sqrt{6}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{3+1}+\frac{5}{\sqrt{6}}\)

\(=\frac{\left(\sqrt{3}+1\right)}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{8}}+\frac{5}{\sqrt{6}}\)

\(=...\)

9 tháng 7 2019

\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)

\(=\frac{2.\left(\sqrt{6}+2+\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{5\sqrt{6}}{6}\)

\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}\)

\(=\frac{17\sqrt{6}}{6}\)

\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}\)

\(=\frac{2\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\)

\(=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)

16 tháng 7 2018

\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)

\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)

\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)

\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)

\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)

16 tháng 7 2018

Cảm ơn @Đường Quỳnh Gianh nhiều nhé <3 

21 tháng 6 2023

\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

15 tháng 8 2018

\(A=\left(\sqrt{8}-3\sqrt{2}+10\right)\left(\sqrt{2}-3\sqrt{0.4}\right)=\sqrt{16}-\frac{12\sqrt{5}}{5}+\sqrt{20}-6\sqrt{10}-6+\frac{18\sqrt{5}}{5}\)

\(A=-2+\frac{16\sqrt{5}}{5}-6\sqrt{10}\)

b)\(B=\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)

15 tháng 8 2018

b) \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}\)

\(=\frac{\left(\sqrt{5}+1\right)-\sqrt{5}+1}{2}\)

\(=1\)

P/s: câu a) với câu c) vì ko có máy tính nên lười nháp, thông cảm, em tự làm đi