giai phuong trinh
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)
\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)
\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)
\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)
Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)
ĐKXĐ : \(-4\le x\le4\)
TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)
\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)
\(\Leftrightarrow x=0\)HOẶC \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)
\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)
\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)
\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)
\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)
\(\Leftrightarrow25x^2+64+80x=64-16x\)
\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)
\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )
VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)
P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>
2)
sử dụng phương pháp nhân liên hợp ở pt (1) ta được
\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)
cộng 2 vế lại được x=-y
rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow x^2-4x+4-x^2+4=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
?? Chưa hiểu cái dòng thứ hai :D