K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 7 2019

\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2=x^2-4\)

\(\Leftrightarrow x^2-4x+4-x^2+4=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

17 tháng 7 2019

?? Chưa hiểu cái dòng thứ hai :D

2 tháng 12 2015

lớp 7 sao mà đã học căn thức ak bạn.có lớp 8 thì đc

24 tháng 2 2019

khó qía

24 tháng 2 2019

ĐKXĐ: \(0\le x\le7;x\in R\)

Phương trình cho tương đương: \(2\sqrt{x}+\left(7-x\right)=\left(2+\sqrt{x}\right)\sqrt{7-x}\)

Đặt \(\sqrt{x}=a,\sqrt{7-x}=b\) với \(a,b\ge0\). Khi đó ta có phương trình:

\(2a+b^2=\left(2+a\right)b\Leftrightarrow b^2-2b+2a-ab=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-a\right)=0\). Đến đây thì dễ rồi :)

11 tháng 1 2019

b/ Đặt \(\sqrt{x^2+1}=a\ge0\)

\(\Rightarrow a^2+3x=\left(x+3\right)a\)

\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)

11 tháng 1 2019

a/ Dựa vô TXĐ thì thấy \(x< 2\)

\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)

Vậy vô nghiệm