Cho hàm số y=f(x)=\(4x+1-\sqrt{3}\left(2x+1\right)\)
a) Chứng tỏ rằng hàm số trên là hàm số bậc nhất đồng biến
b) Tìm x để f(x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)
\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)
\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)
Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R
b: f(x)=0
=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)
=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)
=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)
\(y=f\left(x\right)=6x-1-2x\sqrt{5}+\sqrt{5}=x\left(6-2\sqrt{5}\right)+\sqrt{5}-1\)
Vì \(6-2\sqrt{5}\ne0\) nên hs bậc nhất
Ta có \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2>0\left(6-2\sqrt{5}\ne0\right)\) nên hs đồng biến trên R
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
1:
a: m^2+1>=1>0 với mọi m
=>y=(m^2+1)x-5 luôn là hàm số bậc nhất
b: Do m^2+1>0 với mọi m
nên hàm số y=(m^2+1)x-5 đồng biến trên R
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R