Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Ta thấy: $(\sqrt{3}-1)(3-1)=2(\sqrt{3}-1)>0$ nên hàm số trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=2(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=2(\sqrt{3}-1)(\sqrt{3}+1)+1=2(3-1)+1=5$
$F[(\sqrt{3}+1)(3+1)]=F[4(\sqrt{3}+1)]=2(\sqrt{3}-1).4(\sqrt{3}+1)+1$
$=8(3-1)+1=17$
Lời giải:
a. Hệ số 2>0 nên hàm đồng biến
b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến
c. Hệ số $-5<0$ nên hàm nghịch biến
d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến
e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến
f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.
\(y=f\left(x\right)=6x-1-2x\sqrt{5}+\sqrt{5}=x\left(6-2\sqrt{5}\right)+\sqrt{5}-1\)
Vì \(6-2\sqrt{5}\ne0\) nên hs bậc nhất
Ta có \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2>0\left(6-2\sqrt{5}\ne0\right)\) nên hs đồng biến trên R
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$