K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét tg ABCD có \(\widehat{A}+\widehat{C}=180^0\)

\(\Rightarrow\)ABCD là tg nt (O)  ( tg có tổng 2 góc đối = 1800 là tg nt )

xét (O) có \(\widehat{DAC}=\widehat{BAC}\)( AC là tia pg của \(\widehat{DAC}\))

\(\Rightarrow\)\(\widebat{DC}=\widebat{BC}\)(2 góc nt = nhau chắn 2 cung = nhau)

\(\Rightarrow\widehat{DBC}=\widehat{BDC}\)( 2 CUNG = NHAU CHẮN 2 GÓC NT = NHAU)

\(\Rightarrow\)\(\Delta BDC\)cân tại C 

mà CK là đường trung tuyến của \(\Delta BDC\)(K là trung điểm của BD)

\(\Rightarrow\)CK đồng thời là đường cao , đường trung tuyến , tia pg của \(\Delta BDC\)

\(\Rightarrow\)\(CK\perp BD\)              (1)

xét \(\Delta BDE\)là tam giác đều có CK là đường trung tuyến ( k là trung điểm của BD)

\(\Rightarrow\)EK đồng thời là đường cao , trung tuyến và tia phân giác của \(\Delta BDE\)

\(\Rightarrow EK\perp BD\)    (2)

TỪ (1) VÀ (2) \(\Rightarrow\)E , C , K thẳng hàng

#mã mã#

5 tháng 7 2019

A B C D E M K H

a) Gọi H là giao điểm của DM và AC

Xét tam giác ADM có: AD=AM ( giả thiết)

=> Tam giác ADM cân tại A  và có AH là đường cao

=> AH là đường trung tuyến của tam giác ADM

=> H là trung điểm DM

=> tam giác CDM có CH là đường cao đồng thời là đường trung tuyến 

=> Tam giác DCM cân tại D

=> CD=CM

b) Xét tam giác ADC và tam giác AMC có:

CD=CM ( chứng minh trên)

AC chung

AD=AM ( giả thiết)

=> Tam giác ADC = tam giác AMC

=> \(\widehat{ADC}=\widehat{AMC}\)

mà \(\widehat{AMC}+\widehat{CMB}=180^o\)

=> \(\widehat{ADC}+\widehat{CMB}=180^o\) (1)

Xét tứ giác ABCD có góc A+góc C=180o

=> \(\widehat{ADC}+\widehat{ABC}=180^o\)(2)

Từ (1); (2) 

=> \(\widehat{ABC}=\widehat{CMB}\Rightarrow\widehat{CBM}=\widehat{CMB}\)

=> Tam giác BCM cân tại C

=> CM =CB

mà theo câu a : CD=CM

=> CB=CD

=> Tam giác DCB cân tại C có K là trung điểm BD

=> CK vuông góc BD (3)

Mặt khác xét tam giác EBD đều có K là trung điểm BD

=> EK vuông góc với BD (4)

Từ (3), (4) 

=> E, K, C thẳng hàng  

5 tháng 7 2019

Bạn tham khảo link bên dưới nhé!

Câu hỏi của Đoàn Phương Liên - Toán lớp 8 - Học toán với OnlineMath

21 tháng 3 2020

A B C x D E y K M

HD : xét 2 góc DAC và góc BAE

    ^DAB+^BAC=^DAC

   ^CAE+^BAC=^BAE

   ^DAB=^CAE=90o

=> ^DAC=^BAE

sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a

b) cm DKE =90o

2 câu c ; d dễ tự làm!

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC có...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
18 tháng 4 2022

-Bài hình chẳng ai phụ trách giùm mình hết :v (đặc biệt là hình nâng cao).

-Mình cũng xin lỗi vi tối mới làm đc cho bạn nhé.

-Gọi E là giao của AD và BC.

\(\widehat{BAE}=180^0-\widehat{BAD}=\widehat{BCD}\)

\(\Rightarrow\)△ABE∼△CDE (g-g).

\(\Rightarrow\dfrac{AE}{CE}=\dfrac{BE}{DE}\Rightarrow\dfrac{AE}{BE}=\dfrac{CE}{DE}\Rightarrow\)△EAC∼△EBD (c-g-c).

\(\Rightarrow\widehat{ICB}=\widehat{IDA}\Rightarrow\)△IBC∼△IAD (g-g)

\(\Rightarrow\dfrac{IB}{IA}=\dfrac{IC}{ID}\Rightarrow\dfrac{IB}{IC}=\dfrac{IA}{ID}\Rightarrow\)△AIB∼△DIC (c-g-c)

\(\Rightarrow\widehat{IAM}=\widehat{IDN};\dfrac{IA}{ID}=\dfrac{AB}{DC}\Rightarrow\dfrac{IA}{ID}=\dfrac{MA}{ND}\Rightarrow\dfrac{IA}{MA}=\dfrac{ID}{ND}\)

\(\Rightarrow\)△AIM∼△DIN (c-g-c) \(\Rightarrow\widehat{AIM}=\widehat{DIN}\)

 

19 tháng 4 2022

Em cám  ơn thầy nhiều lắm ạ!
Em đã hiểu bài rồi thầy ạ! Trân trọng sự giúp đỡ của thầy ạ!