Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo link bên dưới nhé!
Câu hỏi của Đoàn Phương Liên - Toán lớp 8 - Học toán với OnlineMath
Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M
Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.
Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD
\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB
=> ^SBF=2. ^BDS .
\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét \(\Delta\)OIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
ΔAEC=ΔABD (c.g.c) => EC=BD
ΔEMC=ΔSMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB
=> ^SBF=2. ^BDS .
ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét ΔOIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
Bài 1:
Gọi N là trung điểm của HC
Xét tam giác ABC cân tại A ta có:
AM là đường trung tuyến (gt)
=> AM là đường cao của tam giác ABC
=> AM _|_ BC tại M
Xét tam giác HMC ta có:
O là trung điểm của Mh (gt)
N là trung điểm của HC ( cách vẽ)
=> ON là đường trung bình của tam giác HMC
=> ON // MC
Mà AM _|_ MC tại M (cmt)
Nên NO _|_ AM
Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)
=> O là trực tâm của tam giác AMN
=> AO _|_ MN
Xét tam giác BHC ta có:
M là trung điểm của BC (gt)
N là trung điểm của HC (cách vẽ)
=> MN là đường trung bình của tam giác BHC
=> MN // BH
Mà AO _|_ MN (cmt)
Nên AO _|_ BH (đpcm)
LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws
a) Gọi H là giao điểm của DM và AC
Xét tam giác ADM có: AD=AM ( giả thiết)
=> Tam giác ADM cân tại A và có AH là đường cao
=> AH là đường trung tuyến của tam giác ADM
=> H là trung điểm DM
=> tam giác CDM có CH là đường cao đồng thời là đường trung tuyến
=> Tam giác DCM cân tại D
=> CD=CM
b) Xét tam giác ADC và tam giác AMC có:
CD=CM ( chứng minh trên)
AC chung
AD=AM ( giả thiết)
=> Tam giác ADC = tam giác AMC
=> \(\widehat{ADC}=\widehat{AMC}\)
mà \(\widehat{AMC}+\widehat{CMB}=180^o\)
=> \(\widehat{ADC}+\widehat{CMB}=180^o\) (1)
Xét tứ giác ABCD có góc A+góc C=180o
=> \(\widehat{ADC}+\widehat{ABC}=180^o\)(2)
Từ (1); (2)
=> \(\widehat{ABC}=\widehat{CMB}\Rightarrow\widehat{CBM}=\widehat{CMB}\)
=> Tam giác BCM cân tại C
=> CM =CB
mà theo câu a : CD=CM
=> CB=CD
=> Tam giác DCB cân tại C có K là trung điểm BD
=> CK vuông góc BD (3)
Mặt khác xét tam giác EBD đều có K là trung điểm BD
=> EK vuông góc với BD (4)
Từ (3), (4)
=> E, K, C thẳng hàng