A=(căn củax/3+căn củax+2x/9-x):(cănx-1/
x-3căn của x-2/căn của x) ( x>0,x khác 9,x khác 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
\(M=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2}{\sqrt{x}-3}\)
Để M là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}2⋮\sqrt{x}-3\\\sqrt{x}-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3\in\left\{2;1;-1;-2\right\}\\x>9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{25;16;4;1\right\}\\x>9\end{matrix}\right.\Rightarrow x\in\left\{25;16\right\}\)
Thế vào M,ta đường \(\left\{{}\begin{matrix}x=25\Rightarrow M=1\\x=16\Rightarrow M=2\end{matrix}\right.\)
\(\Rightarrow M\) có giá trị là số tự nhiên lớn nhất là \(2\) khi \(x=16\)
a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)