Bài toán :
Cho tứ giác ABCD có góc A + góc C = 180o , AC là phân giác của góc BAD.
Trên một nửa mặt phẳng bờ BD không chứa C vẽ tam giác đều BDE
Gọi K là trung điểm của BD. CMR : C, K, E thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là giao điểm của DM và AC
Xét tam giác ADM có: AD=AM ( giả thiết)
=> Tam giác ADM cân tại A và có AH là đường cao
=> AH là đường trung tuyến của tam giác ADM
=> H là trung điểm DM
=> tam giác CDM có CH là đường cao đồng thời là đường trung tuyến
=> Tam giác DCM cân tại D
=> CD=CM
b) Xét tam giác ADC và tam giác AMC có:
CD=CM ( chứng minh trên)
AC chung
AD=AM ( giả thiết)
=> Tam giác ADC = tam giác AMC
=> \(\widehat{ADC}=\widehat{AMC}\)
mà \(\widehat{AMC}+\widehat{CMB}=180^o\)
=> \(\widehat{ADC}+\widehat{CMB}=180^o\) (1)
Xét tứ giác ABCD có góc A+góc C=180o
=> \(\widehat{ADC}+\widehat{ABC}=180^o\)(2)
Từ (1); (2)
=> \(\widehat{ABC}=\widehat{CMB}\Rightarrow\widehat{CBM}=\widehat{CMB}\)
=> Tam giác BCM cân tại C
=> CM =CB
mà theo câu a : CD=CM
=> CB=CD
=> Tam giác DCB cân tại C có K là trung điểm BD
=> CK vuông góc BD (3)
Mặt khác xét tam giác EBD đều có K là trung điểm BD
=> EK vuông góc với BD (4)
Từ (3), (4)
=> E, K, C thẳng hàng
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!
Bài 1:
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và AD=AE
nên EB=DC
Xét ΔEBO vuông tại E và ΔDCO vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó: ΔEBO=ΔDCO
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó:ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
Bạn tham khảo link bên dưới nhé!
Câu hỏi của Đoàn Phương Liên - Toán lớp 8 - Học toán với OnlineMath