K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

Kết quả của bài là : 69.Bạn nhé!

3 tháng 7 2019

cách làm thế nào hả bạn.Nguyên

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

14 tháng 11 2015

gọi số cân tìm là a

ta có a chia cho 3 dư 1 suy ra  a+2 chia hết cho 3

         a chia cho 4 dư 2 suy ra a+2 chia hết cho 4

         a chia cho 5 dư 3 suy ra a+2 chia hết cho 5

         a chia cho 6 dư 4 suy ra a+2 chia hết cho 6

suy ra (a+2) là BC(3,4,5,6)= 60=B(60)=(0,60,120,180,240,300,360,420,540........0

a thuộc (58,118,178,238,298,358,418,538....

suy ra a=598

 

12 tháng 9 2021

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)

23 tháng 7 2018

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).