K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2019

Phương trình (d): \(y=kx+b\)

Do (d) qua M nên \(1=k+b\Rightarrow b=-k+1\Rightarrow y=kx-k+1\)

Phương trình hoành độ giao điểm (d) và (P):

\(\frac{x^2}{2}=kx-k+1\Leftrightarrow x^2-2kx+2k-2=0\)

\(\Delta'=k^2-2k+2=\left(k-1\right)^2+1>0\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo định lý Viet: \(\left\{{}\begin{matrix}x_A+x_B=2k\\x_Ax_B=2k-2\end{matrix}\right.\)

\(\left(x_A+x_b\right)^2-2x_Ax_B=2x_Ax_B+5\)

\(\Leftrightarrow4k^2-4k+4=4k+1\)

\(\Leftrightarrow4k^2-8k+3=0\Rightarrow\left[{}\begin{matrix}k=\frac{3}{2}\\k=\frac{1}{2}\end{matrix}\right.\)

Khi \(k=2\Rightarrow\left\{{}\begin{matrix}A\left(2+\sqrt{2};3+2\sqrt{2}\right)\\B\left(2-\sqrt{2};3-2\sqrt{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}H\left(2+\sqrt{2};0\right)\\K\left(2-\sqrt{2};0\right)\end{matrix}\right.\)

\(\Rightarrow AB=\sqrt{\left(2\sqrt{2}\right)^2+\left(4\sqrt{2}\right)^2}=2\sqrt{10}\)

\(AH=y_A=3+2\sqrt{2}\) ; \(BK=y_B=3-2\sqrt{2}\); \(HK=x_A-x_B=2\sqrt{2}\)

\(\Rightarrow AB+AH+BK+HK=...\)

14 tháng 5 2021

a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)

Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)

Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)

b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:

\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)

Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)

Vậy \(m=-\frac{9}{2}\)

Trong mặt phẳng Oxy, cho điểm \(F\left( {0;\frac{1}{2}} \right)\), đường thẳng \(\Delta :y + \frac{1}{2} = 0\) và điểm \(M(x;y)\). Để tìm hệ thức giữa x và y sao cho \(M\) cách đều  F và \(\Delta \), một học sinh đã làm như sau:+) Tính MF và MH (với H là hình chiếu của M trên \(\Delta \)):\(MF = \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}} ,MH = d\left( {M,\Delta } \right) = \left| {y + \frac{1}{2}} \right|\)+) Điều kiện để M...
Đọc tiếp

Trong mặt phẳng Oxy, cho điểm \(F\left( {0;\frac{1}{2}} \right)\), đường thẳng \(\Delta :y + \frac{1}{2} = 0\) và điểm \(M(x;y)\). Để tìm hệ thức giữa x và y sao cho \(M\) cách đều  F và \(\Delta \), một học sinh đã làm như sau:

+) Tính MF và MH (với H là hình chiếu của M trên \(\Delta \)):

\(MF = \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}} ,MH = d\left( {M,\Delta } \right) = \left| {y + \frac{1}{2}} \right|\)

+) Điều kiện để M cách đều F  và \(\Delta \):

\(\begin{array}{l}MF = d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}}  = \left| {y + \frac{1}{2}} \right|\\ \Leftrightarrow {x^2} + {\left( {y - \frac{1}{2}} \right)^2} = {\left( {y + \frac{1}{2}} \right)^2}\\ \Leftrightarrow {x^2} = 2y \Leftrightarrow y = \frac{1}{2}{x^2}\left( * \right)\end{array}\)

Hãy cho biết tên đồ thị (P) của hàm số (*) vừa tìm được.

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết và tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.

27 tháng 3 2016

Gọi \(M\left(x_1,1-\frac{1}{x_1-1}\right);N\left(x_2,1-\frac{1}{x_2-1}\right)\)

Theo yêu cầu <=> \(\overrightarrow{AN}=-2\overrightarrow{AM}\)

\(\begin{cases}x_2=2-2x_1\\-\frac{1}{3}-\frac{1}{x_2-1}=2\left(-\frac{1}{3}-\frac{1}{x_1-1}\right)\end{cases}\)

M(0,2) ; N(2,0)

d:y=2-x

23 tháng 4 2019

Phương trình hoành độ giao điểm của (P) với (d):

\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)

\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)

\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)

\(=4m^2+8m+4-4m^2-12\)

\(=8m-8\)

(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.

\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)

\(\Leftrightarrow m< 1\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (p) và (d) là

\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)

\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)

\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)

\(=m^2+2m+1-m^2-3=2m-2\)

(p) và (d) không có điểm chung <=> \(\Delta< 0\)

<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)

Vậy với \(m< 1\)thì (p) và (d) không có điểm chung

NV
21 tháng 10 2019

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

NV
21 tháng 10 2019

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m