K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Chúng ta nhân biểu thức liên hợp

\(\left(x+\sqrt{x^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)=2013\left(1\right)\)

\(\left(y+\sqrt{y^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\left(2\right)\)

Nhân vế với vế của (1) và (2)

\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)<=>\(2013.\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)

<=>\(\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\)

Nhân ra

\(xy-y\sqrt{\left(x^2+2013\right)}-x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(3\right)\)Từ biểu thức ban đầu cho ta có

\(xy+y\sqrt{x^2+2013}+x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(4\right)\)Cộng 3 và 4 lại với nhau và bình phương 2 vế lên là ra bạn à

26 tháng 11 2015

Ta có

\(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)

\(\left(\sqrt{y^2+2013}+y\right)\left(\sqrt{y^2+2013}-y\right)=y^2+2013-y^2=2013\)

Mà Theo đề Ra

=>\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)(*)

và \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(**)

Cộng  (*) với (**)

=>x+y = -x -y

hay x + y =0

=> A = x+y =0