Giúp em giải chi tiết bài phân tích đa thức thành nhân tử này với ạ!!! Em cảm ơn nhiều!!!
(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
a: =x^2+2xy+y^2-4x^2y^2
=(x+y)^2-(2xy)^2
=(x+y+2xy)(x+y-2xy)
b: =49-(a^2-2ab+b^2)
=49-(a-b)^2
=(7-a+b)(7+a-b)
c: =\(a^2-\left(b^2-4bc+4c^2\right)\)
\(=a^2-\left(b-2c\right)^2=\left(a-b+2c\right)\left(a+b-2c\right)\)
d:
\(=\left(bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(bc-b^2-c^2+a^2\right)\left(bc+b^2+c^2-a^2\right)\)
e: \(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-4c^2\)
=2(a+b)^2-2c^2
=2[(a+b)^2-c^2]
=2(a+b-c)(a+b+c)
Bạn ơi bạn có thể ghi câu trả lời ra cụ thể giúp mình có được không ạ ?
Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)
\(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)
\(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)
\(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)
\(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)
\(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)
\(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)
\(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)
\(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)
\(x^2-10x+16=x^2-8x-2x+16=x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x-2\right)\)
\(x^2-2x-15=x^2-5x+3x-15=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
\(2x^2+7x+3=2x^2+x+6x+3=x\left(2x+1\right)+3\left(2x+1\right)=\left(x+3\right)\left(2x+1\right)\)
a) \(x^2-10x+16=x^2-8x-2x+16=\left(x^2-8x\right)-\left(2x-16\right)=x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x-2\right)\)b) \(x^2-2x-15=x^2+3x-5x-15=\left(x^2+3x\right)-\left(5x+15\right)=x\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-5\right)\)c) \(2x^2+7x+3=2x^2+x+6x+3=\left(2x^2+x\right)+\left(6x+3\right)=x\left(2x+1\right)+3\left(2x+1\right)=\left(2x+1\right)\left(x+3\right)\)
(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến
\(\left(a+b\right).\left(b+c\right).\left(c-a\right)+\left(b+c\right).\left(c+a\right).\left(a-b\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left[\left(b+c\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left(ac-a^2+bc-ab+a^2-ab+ac-bc\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=-\left(a+b\right).2a.\left(b-c\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left(b-c\right).\left(-2a+c+a\right)=\left(a+b\right).\left(b-c\right).\left(c-a\right)\)
giai lai:
\(\left(b+c\right).\left[\left(a+b\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=-\left(b+c\right).2a.\left(b-c\right)+\left(b-c\right).\left(ac+bc+a^2+ab\right)\)
\(=\left(b-c\right).\left(-2ab-2ac+ac+bc+a^2+ab\right)\)
\(=\left(b-c\right).\left(-ab-ac+bc+a^2\right)\)
\(=\left(b-c\right).\left(a+b\right).\left(a-c\right)\)