Tìm số dư của \(3^{506^{80}}\) khi cho cho 7, 15
P/s: Em cần phần: "tìm số dư khi chia cho 15" thôi ạ, phần kia em làm ra rồi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
Gọi n là số cần tìm :
ta có : n + 1 chia hết cho 8 , do đó n + 65 chia hết cho 8
Ta lại có : n + 3 chia hết cho 31 , do đó n + 65 chia hết 31
Vậy n + 65 là bội chung của 8 và 31
=> B( 8 , 31 ) nhỏ hơn 1000 là : 248; 496; 744; 992
Làm ơn đi ai tick cho mình vài cái đi ,chán quá đi mất !
Gọi số tự nhiên đó là \(n\).
Ta có: \(n\)chia cho \(5\)dư \(3\)nên \(2\times n\)chia cho \(5\)dư \(6\)nên \(2\times n-1\)chia hết cho \(5\).
\(n\)chia cho \(9\)dư \(5\)nên \(2\times n\)chia cho \(9\)dư \(10\)nên \(2\times n-1\)chia hết cho \(9\).
Suy ra \(2\times n-1\)chia hết cho \(5\times9=45\).
\(800< n< 900\Leftrightarrow1599< 2\times n-1< 1799\)
Có \(1799=39\times45+44\)mà \(n\)lớn nhất nên \(2\times n-1=39\times45\Leftrightarrow n=878\).
Ta có:
+) a chia hết cho b được thương là q thì a = b.q
+) Nếu a chia cho b được thương là dư r thì a = b.q + r
=> a - r = b.q => a - r chia hết cho b
Hoặc a + (b - r) = bq + r + (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b
Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5
gọi số cần tìm là a
ta có :
a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6
=>a+3 chia hết cho 5;7;9
Vì a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5
a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7
a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9
nên lấy a+3 để xét BC của 5;7;9
....
Lời giải:
Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$
$\Rightarrow$:
$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$
$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$
$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$
Tức $A$ chia $11$ dư $7$
---------------------------------
Tương tự:
$3^{12}\equiv 1\pmod {13}$
$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$
Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$
$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$
Vậy $A$ chia $13$ dư $6$
giai lai
\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)
Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)
\(\Rightarrow3^{506^{80}}=3^{4k}\)
Ta có:
\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)
\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)
\(\Rightarrow3^{4k}-6⋮5\)(2)
Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1
Vậy...
nhầm dòng gần cuối 34k-6 :((