tìm số tự nhiên x biết rằng : 1 phần 3 + 1 phần 6 + 1 phần 10 + ... 2 phần x(x+1)= 2007 phần 2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\frac{x+1}{2009}+\frac{x+2}{2009}=\frac{x+10}{2000}+\frac{x+11}{1999}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)\)
\(\Rightarrow\frac{x+1+2009}{2009}+\frac{x+2+2008}{2008}=\frac{x+10+2000}{2000}+\frac{x+11+1999}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2000}+\frac{x+2010}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2000}-\frac{x+2010}{1999}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\right)=0\)
Mà \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\ne0\)
=> x + 2010 = 0 => x = -2010
Đây là cuộc thi nhé. cần sự công bằng. Mong em không tái phạm lần sau. Bạn sẽ bị khóa nick hoặc trừ 5000 điểm nhé!
BQT thân gửi em!
__BQT Lớp 6/7 Hỏi Đáp__
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{11}{75}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{11}{75}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{11}{75}:\frac{1}{2}=\frac{22}{75}\Leftrightarrow\frac{1}{x+2}=\frac{1}{25}\Leftrightarrow x=23\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.(x+1)}=\frac{2007}{2009}\)
=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2019}\)
Vì 1 = 1
=> x + 1 = 2019
=> x = 2019 - 1
=> x = 2018
tra
r lời
x=2018
chúc bn
hc tốt