Cho tổng S = 6 + 62 + 63 + 64 + 65 + 66 + 67 + 68. Chứng minh rằng S chia hết cho 21.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (45-63+18) x (1+2+3+4+5+6+7+8+9)
= 0 x (1+2+3+4+5+6+7+8+9) = 0
b. 60-61+62-63+64-65+66-67+68-69+70
= 60 + (-61-69)+(62+68)+(-63-67)+(64+66)-65+70
= 60 + (-130)+130+(-130)+130-65-70
= 60 + (-130+130) + (-130+130)-65+70
= 60 - 65 + 70 = 65
Ý bạn là mỗi phép tính phải thêm dấu và ....để kết quả bằng 6 phải không ạ
các phép tính trong ngoặc đều bằng 0
suy ra chỉ còn 2005 +69 = 2074
Ta có :
\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)
\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)
\(\Rightarrow S< \frac{1}{17}.48\)
\(\Rightarrow S< \frac{48}{17}\)
\(\Rightarrow S< 2\)( 1 )
Lại có :
\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)
\(\Rightarrow S>\frac{1}{64}.48\)
\(\Rightarrow S>\frac{3}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)
Vậy \(1< S< 2\left(ĐPCM\right)\)
ta có: 2005 + 53-54-55+56-57-58-59+60+61-62-63+64+65-66-67+68+69
= 2005+(53-54-55+56)+(57-58-59+60)+(61-62-63+64)+(65-66-67+68)+69
= 2005+0+0+0+0+69
= 2005+69
= 2074