Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)
\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
ta có \(S=\frac{6}{15}+\frac{6}{16}+\frac{6}{17}+\frac{6}{18}+\frac{6}{19}\)
\(\Rightarrow S>\frac{6}{20}+\frac{6}{20}+\frac{6}{20}+\frac{6}{20}+\frac{6}{20}\)
\(\Rightarrow S>\frac{30}{20}\)
\(\Rightarrow S>1.5>1\)
\(\Rightarrow s>1\)
Ta có :
\(S=\frac{6}{15}+\frac{6}{16}+\frac{6}{17}+\frac{6}{18}+\frac{6}{19}\)
\(\Rightarrow S< \frac{6}{15}+\frac{6}{15}+\frac{6}{15}+\frac{6}{15}+\frac{6}{15}\)
\(\Rightarrow S< \frac{30}{15}\)
\(\Rightarrow s< 2\)
Vậy \(1< S< 2\)
Ta có :
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét :
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}<\frac{1}{12}.3=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{60}.3=\frac{1}{20}\)
=>S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
=>\(S<\frac{1}{20}\)(đpcm)
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{13}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\right)\)\(\Rightarrow S<\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Ta có :
\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)
\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)
\(\Rightarrow S< \frac{1}{17}.48\)
\(\Rightarrow S< \frac{48}{17}\)
\(\Rightarrow S< 2\)( 1 )
Lại có :
\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)
\(\Rightarrow S>\frac{1}{64}.48\)
\(\Rightarrow S>\frac{3}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)
Vậy \(1< S< 2\left(ĐPCM\right)\)