Mọi người giúp tôi với . Thanks with love !
Cho \(a,b,c\ge0\) thỏa mãn \(a^2+b^2\le2\). Tìm giá trị lớn nhất của biểu thức : \(P=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)
Áp dụng BĐT Bunhiacopxki :
\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)
\(\le2\left(3.2+12.1\right)=36\)
\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Dấu "=" xảy ra khi a = b = 1
ÁP DỤNG BĐT CÔ SI ,TA CÓ:
\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\)
(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\)
TA CÓ :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3) TA CÓ;
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\)
DẤU ĐẲNG THỨC XẢY RA KHI a=b=1
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Áp dụng bất đẳng thức Cô-si :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le a\cdot\frac{3a+a+2b}{2}+b\cdot\frac{3b+b+2a}{2}\)
\(=a\cdot\frac{4a+2b}{2}+b\cdot\frac{4b+2a}{2}\)
\(=a\left(2a+b\right)+b\left(2b+a\right)\)
\(=2a^2+2b^2+2ab\)
\(=2\left(a^2+b^2+ab\right)\le2\left(2+\frac{a^2+b^2}{2}\right)=2\left(2+\frac{2}{2}\right)=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
p/s: có gì chiều giải nốt, giờ đi ăn cơm @@
Ta có \(\sqrt{3b\left(a+2b\right)}\le\frac{1}{2}\left(3b+a+2b\right)=\frac{1}{2}\left(a+5b\right)\)
\(\sqrt{3a\left(b+2a\right)}\le\frac{1}{2}\left(5a+b\right)\)
=> \(P\le\frac{1}{2}\left(a^2+b^2+10ab\right)\)
Mà \(ab\le\frac{1}{2}\left(a^2+b^2\right)\le\frac{1}{2}.2=1\)
=> \(P\le\frac{1}{2}\left(2+10\right)=6\)
Vậy MaxP=6 khi a=b=1
Cảm ơn bạn Trần Phúc Khang ạ.