K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 5 2019

Do x thuộc cung phần tư thứ \(IV\) \(\Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx>0\end{matrix}\right.\) \(\Rightarrow sinx-cosx< 0\)

\(sinx+cosx=m\Rightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Rightarrow1+2sinx.cosx=m^2\Rightarrow2sinx.cosx=m^2-1\)

Đặt \(P=sinx-cosx< 0\Rightarrow P^2=\left(sinx-cosx\right)^2=1-2sinx.cosx\)

\(\Rightarrow P^2=1-\left(m^2-1\right)=2-m^2\Rightarrow P=-\sqrt{2-m^2}\) (do \(P< 0\))

NV
1 tháng 5 2020

\(M=sin^2x+cos^2x+2sinx.cosx+cos^2x-sin^2x\)

\(=\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(=\left(sinx+cosx\right)\left(sinx+cosx+cosx-sinx\right)\)

\(=2cosx\left(sinx+cosx\right)\)

\(=2\sqrt{2}cosx.cos\left(x-\frac{\pi}{4}\right)\)

1 tháng 5 2020

Cảm ơn bạn nhá!!!

NV
30 tháng 9 2020

\(cos3x=2cos^2\left(\frac{x}{2}-\frac{\pi}{6}\right)-1\)

\(\Leftrightarrow cos3x=cos\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x-\frac{\pi}{3}+k2\pi\\3x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bên dưới thì đơn giản thôi, bạn chia 2 vế cho 2 là ra cái dấu tương đương đó chứ gì nữa

NV
30 tháng 9 2020

Lưu ý quan trọng của pt lượng giác (cặp số 1 và \(\sqrt{3}\) xuất hiện rất thường xuyên):

\(\left\{{}\begin{matrix}\frac{\sqrt{3}}{2}=sin\frac{\pi}{3}=cos\frac{\pi}{6}\\\frac{1}{2}=sin\frac{\pi}{6}=cos\frac{\pi}{3}\end{matrix}\right.\)

Do đó có 2 cách biến đổi tùy thích sử dụng các công thức sau:

\(sina.cosb+cosa.sinb=sin\left(a+b\right)\) (1)

\(sina.cosb-cosa.sinb=sin\left(a-b\right)\) (2)

\(cosa.cosb-sina.sinb=cos\left(a+b\right)\) (3)

\(cosa.cosb+sina.sinb=cos\left(a-b\right)\) (4)

Cụ thể với bài bạn hỏi, có 2 cách thay giá trị:

\(sinx.\frac{1}{2}-cosx.\frac{\sqrt{3}}{2}=0\)

\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=0\) (thay công thức 2)

Hoặc sử dụng cos:

\(sinx.\frac{1}{2}-cosx.\frac{\sqrt{3}}{2}=0\)

\(\Leftrightarrow sinx.sin\frac{\pi}{6}-cosx.cos\frac{\pi}{6}=0\)

\(\Leftrightarrow cosx.cos\frac{\pi}{6}-sinx.sin\frac{\pi}{6}=0\) (nhân 2 vế với -1)

\(\Leftrightarrow cos\left(x+\frac{\pi}{6}\right)=0\) (sử dụng công thức (3))

1B

2A

3A

4C

NV
6 tháng 7 2021

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

29 tháng 7 2019

\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)

29 tháng 7 2019

\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)

Nhiều quá @@ Tách ra đi ><