Tìm số tự nhiên n sao cho n^2/60-n là số nguyên tố.
Giải nhanh giùm mình nha :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n=n-2+2 vì n chia hết cho n-2 nên 2 phải chia hết cho n-2
suy ra n-2 thuộc U(2)={1;2)
TH1: n-2=1 thì n=3
TH2; n-2=2 thì n=4
Vậy n=3 hoặc n=4
1. Để P là số nguyên tố thì một trong 2 thừa số ( n - 2 ) hoặc ( n2 + n - 5 ) một số là số nguyên tố và một số là 1
Vì nếu không có một số bằng 1 thì P là hợp số
TH1 : Nếu ( n - 2 ) = 1 thì n = 3
=> P = ( 3 - 2 ) . ( 32 + 3 - 5 ) = 1. ( 9 + ( -2 )= 1 .7 = 7 thoã mãn đề bài
TH2 : Nếu ( n2 + n - 5 ) = 1 thì n = 2
=> P = ( 2 - 2 ) . ( 22 + n - 5 ) = 0 .( 22 + n - 5 ) = 0 không thoã mãn đề bài
Vậy n = 3
2. Số số hạng của dãy số đó là : ( n - 1 ) : 1 + 1 = n
Tổng của dãy số đó là :
( n +1 ) . n : 2 = 20301
=> ( n + 1 ) . n = 40602
mà 202 . 201 = 40602
Vậy n = 201
Nhớ tk cho mình nhé ! OK
a) A giao P = {2} ; A giao B = rỗng
b) \(P\subset N^{\cdot}\subset N\)
xét n = 2 => 4n + 1 = 2.4 + 1 = 9 (không là số nguyên tố)
=> n = 2 (loại)
xét n = 3 => 2n + 1 = 2.3 + 1 = 7 (thỏa mãn)
4n + 1 = 3.4 + 1 = 13 (thỏa mãn)
=> n = 3 (chọn)
xét n là số nguyên tố, n > 3 => n = 3k + 1 hoặc n = 3k + 2
với n = 3k + 1 => 2n + 1 = 2(3k + 1) + 1 = 6k + 2 = 2(k + 1) (là hợp số)
=> n = 3k + 1 (loại)
với n = 3k + 2 => 4n + 1 = 4(3k + 2) + 2 = 12k + 10 = 2(6k + 5) (là hợp số)
=> n = 3k + 2 (loại)
vậy n = 3
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
tth CTV 10 phút trước
Báo cáo sai phạm
Giải:
Bạn cứ thử lần lượt các số từ 1 - 100 là ra.
Tự làm nhé! Đơn giản lắm
Đs:
\(A=\frac{n^2}{60-n}=\frac{60^2-(60^2-n^2)}{60-n}=\frac{3600}{60-n}-\frac{\left(60-n\right)\left(60+n\right)}{60-n}=\frac{3600}{60-n}-\left(60+n\right).\)
Để A là số nguyên tố, trước hết nó phải là số nguyên. Điều đó xẩy ra khi (60 - n) là ước số dương của 3600 và A phải dương nên n < 60 .
Liệt kê các ước đó ra, Kiểm tr, thấy có ba giá trị của n thỏa mãn là n = 10 , n = 12 , n = 15
Các Bạn tính cụ thể nhe !