K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Trả lời..............

Theo mình làm là ..........

a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)

AHB=900 (AH là đường cao)

Suy ra:ADB=AHB=900

Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB

Tâm O đường tròn là trung điểm AB

b, Chứng minh EAD=HBD

Do AB vuông góc vớiAB

Suy ra EAD =ABD (1)

Mà ABD=HBD (2)

Từ (1) và (2) ta được EAD=HBD

Chứng minh OD sOng song OB

Ta có OD=OB

Nên tam giác OBD cân tại O

Suy ra OD song song OB

c, Tính diện tích phần tam giác ABC nằm  ngoài đường tròn O

Ta có:ABC=60 độ

Xin lỗi tới đây tớ ko biết làm

a: góc ADB=góc AHB=90 độ

=>ADHB nội tiếp

b: góc EAD=90 độ-góc BAD=góc ABE

=>góc EAD=góc HBE

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)