Tìm số nguyên n sao cho n+5 chia hết cho n-2
Giúp mik vs nha😘
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : n + 2 = n - 3 + 5
n - 3 thuộc U(5)
mà U(5) = { 1;5;-1;-5 }
suy ra :
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
vậy n = {4;8;2;-2}
n + 2 chia hết cho n - 3
=> n - 3 + 5 chia hết cho n - 3
=> 5 chia hết cho n - 3 (Vì n - 3 chia hết cho n - 3)
=> n - 3 thuộc {-1; 1; -5; 5}
=> n thuộc {2; 4; -2; 8}
g/s 2n+7 chia hết cho n-2
Ta có 2n+7 cia hết n-2
2-2 chia hết n-2 =>2(n-2) chia hết n-2=>2n-4 chia hết cho n-2
do đó 2n+7-(2n+4) chia hết n-2
(=)2n+7-2n-4 chia hết n-2
(=)3 chia hết n-2 => n-2 thuộc Ư(3).............
bn tự lm tiếp nha đến đây chỉ vc lập bả ng gtrị tìm n
ta có : 2n+7/n-2=2(n-2)+11/n-2=2(n-2)/n-2+11/n-2=2+11/n-2
Để 2n+7 chia hết cho n-2 thì 11/n-2 phải có giá trị nguyên
=>n-2 phải là ước của 11
=>n-2={-11;-1;1;11}
Ta có bảng
n-2 | -11 | -1 | 1 | 11 |
n | -9 | 1 | 3 | 13 |
Vậy n={-9;1;3;13}
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )
5 + n2 - 2n \(⋮\)n - 2
=> 5 + n . n - 2 . n \(⋮\)n - 2
=> 5 + n . ( n - 2 ) \(⋮\)n - 2
=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 5 => n = 7
Với n - 2 = -5 => n = -3
Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }
Để \(5+n^2-2n⋮n-2\)
\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)
Chúc bạn học tốt !!!!
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) n - 6 chia hết cho n-1
n - 1 - 5 chia hết cho n - 1
n - 1 thuộc U(-5)
Rồi bạn liệt kê ra
a) n -6 chia hết cho n-1
n-1-5 chia hết cho n -1
n-1 chia hết cho n-1
=> n-1 € Ư (5)={1;5;-1;-5}
+ n-1 =1=>n=2
+n-1=5=>n=6
+n-1=-1=>n=0
+n+1=-5=>n=-4
=>n={2;6;0;-4}
các bạn giúp mik vs nha mik đang gấp
tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
mik cảm ơn nhiều
(4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
<=> 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
=>2n-1\(\in\){1,-1,3,-3}
=>n\(\in\){0,1,2} (vì n là số tự nhiên)
Ta có: \(\left(n+5\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2+7\right)⋮\left(n-2\right)\)
Vì \(\left(n-2\right)⋮\left(n-2\right)\) nên \(7⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng:
Vậy \(n\in\left\{3;1;9;-5\right\}\)
Để n + 5 chia hết cho n -2 thì : n - 2 + 7 chia hết cho n - 2
Hay n - 2 thuộc Ư(7) = { -1;1;-7;7}
=> n thuộc { 1;3;-5;9}