CMR :A không thể là số tự nhiên
\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+....+\frac{1}{2^{2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(..................\)
\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow M< \left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+........+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(\Rightarrow M< 1-\frac{1}{2017}\)
\(\Rightarrow M< \frac{2016}{2017}\)
\(\Rightarrow\)biểu thức M không là 1 số tự nhiên
Vậy M không là số tự nhiên
Ta có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);......; \(\frac{1}{2017^2}>\frac{1}{2017.2018}=\frac{1}{2017}-\frac{1}{2018}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2017^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2017^2}>\frac{1}{2}-\frac{1}{2018}=\frac{1008}{2018}\)=> M > \(\frac{504}{1009}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);......; \(\frac{1}{2017^2}< \frac{1}{2016.2017}=\frac{1}{2016}-\frac{1}{2017}\)
=> M < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2017}=\frac{2016}{2017}\)=> M < \(\frac{2016}{2017}< 1\)(2)
Từ (1) và (2) suy ra:
\(\frac{504}{1009}< M< 1\)
=> M không phải là số tự nhiên
ta có
1/12+1/1.2+1/2.3+...+1/2014.2015>A>1/12+1/2.3+1/3.4+..+1/2015.2016
1+1-1/2+1/2-1/3+..+1/2014-1/2015>A>1+1/2-1/3+1/3-1/4+...+1/2015-1/2016
2-1/2015>A>1-1/2016
4029/2015>A>2015/2016
<=>A ko phải là số tự nhiên (đpcm)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2015^2}>1\)
=>A > 1 (1)
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{2015^2}<\frac{1}{2014.2015}\)
=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2014.2015}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2014}-\frac{1}{2015}\)
=>\(A<2-\frac{1}{2015}<2\) (2)
Từ (1);(2)=>1 < A < 2
=>A không là số tự nhiên (đpcm)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}\)
\(A< \frac{99}{100}< 1\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)
A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017
2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016
2A + A = 1 + 1/2^2017
=> A = (1 + 1/2^2017) : 3