K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017

2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016

2A + A = 1 + 1/2^2017

=> A = (1 + 1/2^2017) : 3 

24 tháng 4 2017

Ta có: 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(..................\)

\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow M< \left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+........+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(\Rightarrow M< 1-\frac{1}{2017}\)

\(\Rightarrow M< \frac{2016}{2017}\)

\(\Rightarrow\)biểu thức M không là 1 số tự nhiên

Vậy M không là số tự nhiên

24 tháng 4 2017

Ta có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);......; \(\frac{1}{2017^2}>\frac{1}{2017.2018}=\frac{1}{2017}-\frac{1}{2018}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2017^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2017^2}>\frac{1}{2}-\frac{1}{2018}=\frac{1008}{2018}\)=> M > \(\frac{504}{1009}\)(1)

Lại có:  \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);......; \(\frac{1}{2017^2}< \frac{1}{2016.2017}=\frac{1}{2016}-\frac{1}{2017}\)

=> M < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2017}=\frac{2016}{2017}\)=> M < \(\frac{2016}{2017}< 1\)(2)

Từ (1) và (2) suy ra:

\(\frac{504}{1009}< M< 1\)

=> M không phải là số tự nhiên

8 tháng 4 2019

bạn ơi bài này có trong bùi văn tuyên

8 tháng 4 2019

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)

22 tháng 5 2018

Đặt \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

\(\Rightarrow A>1+0=1\)(1)

Ta lại có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1+1-\frac{1}{100}< 2\)(2)

Từ (1) và (2) => 1<A<2

=> A không phải là số tự nhiên

Ta có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{99.100}\)

\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}=1+1-\frac{1}{100}\)\(=\frac{199}{100}< 2\)

Lại có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}>1\)

Nên : \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\) ko phải là số tự nhiên 

24 tháng 4 2016

Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)

Vì:  \(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}\)

\(\frac{1}{4^2}>\frac{1}{3.4}\)

..........

\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)

\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow A<1-\frac{1}{2012}\)

\(\Rightarrow A<1\)

Vì A>0;A<1

=>A không phải số tự nhiên

=>ĐPCM

24 tháng 4 2016

Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112

Vậy A không phải là số tự nhiên

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}>0\)

           \(\frac{1}{3^2}>0\)

           ................

            \(\frac{1}{100^2}>0\)

\(\Rightarrow A>0\left(1\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

           ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

Vậy A ko là STN.

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

Vậy A không phải là một số tự nhiên

26 tháng 4 2017

Ta xét:

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\)

Gọi bội chung nhỏ nhất của \(1,2,3,...,2017\) là \(2^{10}.B\) (với B là tích các số nguyên tố khác 2)

Trong các số từ 1 đến 2017 chỉ có 1024 là số duy nhất có thể phân tích thành tích của các lũy thừa của các số nguyên tố trong đó có \(2^{10}\) còn các số còn lại thì tối đa chỉ phân tích được trong tích có tối đa là \(2^9\).

Vậy khi quy đồng tổng \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\) thì ngoại trừ \(\frac{1}{1024}\)thì sau khi quy đồng có tử là số lẻ. Còn các số khác sẽ có tử đều là số chẵn.

\(\Rightarrow\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}=\frac{sl}{sc}\)(sl: Số lẻ; sc: số chẵn)

Ta lại có: \(1+2+3+...+2017=\frac{2017.2018}{2}=2035153=sl\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right).\left(1+2+...+2017\right)=\frac{sl}{sc}.sl=\frac{sl}{sc}\)

Ta có tử là số lẻ, mẫu là số chẵn nên tử không bao giờ chia hết cho mẫu 

Vậy A không thể là số nguyên được.

25 tháng 4 2017

a là số nguyên

Ta có: A > 0 (Vì A gồm các phân số dương)

Ta lại có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\)

Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)

9 tháng 5 2016

ta thấy 1/2^2;...;1/2016^2 >0=> A>0

lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016

=> A<1

=> 0<A<1 => Ako là stn