Chứng minh đa thức: x2+x+1 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)
Do đó: M vô nghiệm
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
Ta có : x2 - 4x + 16
= x2 - 4x + 4 + 12
= (x - 2)2 + 12
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : (x - 2)2 + 12 \(>0\forall x\)
Hay x2 - 4x + 16 \(>0\forall x\)
Vậy đa thức trên vô nghiệm
F(\(x\)) = \(x^{2024}\) + (\(x-1\))4 + 10
F(\(x\)) = ( \(x^{1012}\) )2 + ((\(x\) - 1)2)2 + 10
vì (\(x^{2012}\))2 ≥ 0 ; ((\(x\) -1)2)2 ≥ 0
⇒ F(\(x\)) ≥ 0 + 0 + 10 = 10 > 0 (∀ \(x\))
Vậy F(\(x\)) vô nghiệm ( đpcm)
Bài làm:
Ta có: \(x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)
=> không tồn tại x thỏa mãn
=> Đa thức vô nghiệm
\(x^2+x+1\)
\(=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x^2+x+1>0\)
=> đa thức trên vô nghiệm
Xét 3 trường hợp
Xét x=0
\(\Rightarrow o^2+0+1=1>0\)\(0\)
\(\Rightarrow\)Với x=0 thì đa thức \(x^2+x+1>0\left(1\right)\)
Xét x>0
\(\Rightarrow x^2\ge0\forall x\)
mà x+1>0
\(\Rightarrow\)\(x^2+x+1>0\forall x>0\)(2)
Xét x<0
\(\Rightarrow\)\(\left(-x\right)^2\ge0\forall x\)<0
\(\Rightarrow x^2-x\ge0\forall x\)<0
mà 1>0
\(\left(-x\right)^2-x+1>0\forall x\)<0
Với x<0 thì \(x^2+x+1>0\forall x< 0\left(3\right)\)
Từ (1);(2) ;(3) \(\Rightarrow\)\(x^2+x+1>0\forall x\)
Vậy\(^{x^2+x+1}\)vô nghiệm