K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

3 tháng 2 2016

hok lóp 7 nhưng chưa hok đến

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

3 tháng 2 2016

Ta có P(1) = 1 = 12; P(2) = 4 = 22 ; P(3) = 9 = 32 ; P(4) = 16 = 42; P(5) = 25 = 52
Xét đa thức Q(x) = P(x) – x2.
Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0.
Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x).
Vì hệ số của x5 bằng 1 nên Q(x) có dạng:
Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5).
Vậy ta có Q(6) = (6 – 1)(6 – 2)(6 – 3)(6 – 4)(6 – 5) = P(6) - 62
Hay P(6) = 5! + 62 = 156.
Q(7) = (7 – 1)(7 – 2)(7 – 3)(7 – 4)(7 – 5) = P(7) – 72
Hay P(7) = 6! + 72 = 769

mình nhanh nhất nhé 

3 tháng 2 2016

c/m a,b,c,d, e  nguyên mak

bạn có lộn klo zay

10 tháng 1 2019

1/ a/ Ta có:

\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)

\(\Leftrightarrow m-3=0\)

\(\Leftrightarrow m=3\)

b/ Theo câu a thì 

\(P\left(x\right)=3x^2+7x-10=0\)

\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)

10 tháng 1 2019

2/ Tương tự a phân tích nhân tử hộ thôi nha

a/ \(1-5x=0\)

b/ \(x^2\left(x+2\right)=0\)

c/ \(\left(x-1\right)\left(2x-3\right)=0\)

d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm

12 tháng 4 2019

\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)

\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)

\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)

\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)

\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)

\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)

\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)

\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)

\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)

\(h\left(x\right)=0+x+6+x^3\)

\(h\left(x\right)=x^3+x+6\)

12 tháng 4 2019

d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9

         <=> h(x)                   = -2x2 - x + 9 - f(x) + g(x)

         <=> h(x)                   = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3

         <=> h(x)                   = x3 + x.

Vậy h(x) = x3 + x