K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

\(\dfrac{\pi}{2}< x< \pi\Rightarrow sinx>0\)

\(\Rightarrow sinx=\sqrt{1-cos^2x}=\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(sin\left(x+\dfrac{\pi}{3}\right)=sinx.cos\left(\dfrac{\pi}{3}\right)+cosx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{4}{5}.\dfrac{1}{2}+\left(-\dfrac{3}{5}\right).\dfrac{\sqrt{3}}{2}=\dfrac{4-3\sqrt{3}}{10}\)

\(cos\left(x+\dfrac{\pi}{4}\right)=cosx.cos\left(\dfrac{\pi}{4}\right)-sinx.sin\left(\dfrac{\pi}{4}\right)=-\dfrac{3}{5}.\dfrac{\sqrt{2}}{2}-\dfrac{4}{5}.\dfrac{\sqrt{2}}{2}=-\dfrac{7\sqrt{2}}{10}\)

NV
7 tháng 11 2019

a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)

\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)

b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)

c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)

d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả

11 tháng 10 2023

loading...  loading...  

III. Phương trình bậc nhất đối với sinx và cosx:*Giải các phương trình bậc nhất đối với sinx và cosx sau...
Đọc tiếp

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

23
NV
30 tháng 7 2021

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
30 tháng 7 2021

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
17 tháng 9 2020

c/

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=x+\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất với sin và cos:

\(m^2+\left(m-1\right)^2\ge5\)

\(\Leftrightarrow m^2-m-2\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

NV
17 tháng 9 2020

a/

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{3}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\sqrt{\frac{3}{2}}>1\)

Pt vô nghiệm

b/

\(\Leftrightarrow\frac{2}{\sqrt{13}}sinx+\frac{3}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)

Đặt \(\frac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sinx.cosa+cosx.sina=cosa\)

\(\Leftrightarrow sin\left(x+a\right)=sin\left(\frac{\pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+a=\frac{\pi}{2}-a+k2\pi\\x+a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2a+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

13 tháng 11 2017

15 tháng 7 2022

C

3 tháng 1 2020

29 tháng 7 2019
https://i.imgur.com/9qSBKHl.jpg
29 tháng 7 2019
https://i.imgur.com/zw6cbvs.jpg
3 tháng 9 2018

8sinxcosx - cos4x + 3 = 0

⇔4sin2x - (1-2sin22x) + 3 = 0

⇔sin22x + 2sin2x + 1=0

⇔(sin2x +1) = 0

NV
16 tháng 10 2020

1.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
16 tháng 10 2020

4.

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3=1+\frac{1-t^2}{2}\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)