Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a>0 , b> 0 , c>0 .CM bất đẳng thức:
\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
ta có : \(\frac{ab}{c}+\frac{ca}{b}\ge2a;\frac{bc}{a}+\frac{ca}{b}\ge2c\)
Do đó : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}+\frac{ca}{b}\ge2b+2a+2c\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
ta có : \(\frac{ab}{c}+\frac{ca}{b}\ge2a;\frac{bc}{a}+\frac{ca}{b}\ge2c\)
Do đó : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}+\frac{ca}{b}\ge2b+2a+2c\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)