Rút gọn
A = \(\frac{cot+tan}{cot-tan}\) khi sin =\(\frac{3}{5}\),0<a<\(\frac{\pi}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)
\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)
\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)
a, Ta có: \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow\left(\dfrac{3}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos\alpha=\pm\dfrac{4}{5}\)
Vậy đẳng thức có thể đồng thời xảy ra.
b, Ta có: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow1+cot^2\alpha=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}\Rightarrow cot\alpha=\pm2\sqrt{2}\)
Hai đẳng thức không thể đồng thời xảy ra.
c, Ta có: \(tan\alpha\cdot cot\alpha=1\Rightarrow3\cdot cot\alpha=1\Rightarrow cot\alpha=\dfrac{1}{3}\)
Đẳng thức có thể đồng thời xảy ra.
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.
a/ Có \(\sin B=\frac{AC}{BC};\sin C=\frac{AB}{BC};\cos B=\frac{AB}{BC};\cos C=\frac{AC}{BC}\)
\(\Rightarrow\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{AC-AB}{AB-AC}\)
Nếu AC<AB=> AC-AB<0 =>...<0
Nếu AC>AB=>AB-AC<0=>...<0
b/ làm tg tự câu a
c/ \(\cot B=\frac{AB}{AC};\cot C=\frac{AC}{AB}\)
\(\Rightarrow\cot B+\cot C=\frac{AB^2+AC^2}{AB.AC}\)
Quy đồng lên có: \(AB^2+AC^2>2AB.AC\) (luôn đúng vs AB\(\ne\) AC)
Vậy đẳng thức đc CM
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
Giả sử tất cả các biểu thức đều xác định
a/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
b/
\(tanx+cotx=\frac{sinx}{cosx}+\frac{cosx}{sinx}=\frac{sin^2x+cos^2x}{sinx.cosx}=\frac{1}{sinx.cosx}\)
c/
\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)
d/
\(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{1}{1+\frac{1}{tanx}}=\frac{1}{1+tanx}+\frac{tanx}{1+tanx}=\frac{1+tanx}{1+tanx}=1\)
e/
\(\left(1-\frac{1}{cosx}\right)\left(1+\frac{1}{cosx}\right)+tan^2x=1-\frac{1}{cos^2x}+tan^2x\)
\(=\frac{cos^2x-1}{cos^2x}+tan^2x=\frac{-sin^2x}{cos^2x}+tan^2x=-tan^2x+tan^2x=0\)
Lời giải:
\(\sin a=\frac{3}{5}\Rightarrow \cos ^2a=1-\sin ^2a=\frac{16}{25}\)
Mà \(a\in (0; \frac{\pi}{2})\Rightarrow \cos a>0\). Do đó \(\cos a=\frac{4}{5}\).
\(\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{3}{5}: \frac{4}{5}=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)
Như vậy:
\(A=\frac{\cot a+\tan a}{\cot a-\tan a}=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=\frac{25}{7}\)