K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

\(x^2+5y^2-4xy-4y+3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1\)

\(x;y\in Z\)\(\Rightarrow\left(x-2y\right)^2\ge0;\left(y-2\right)^2\ge0\)\(\left(x-2y\right)^2;\left(y-2\right)^2\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2\right)^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=1\\\left(y-2\right)^2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Y
14 tháng 4 2019

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1=0^2+1^2\)

\(x,y\in Z\) nên ta có các trường hợp sau:

+ TH1 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\left(TM\right)\)

+ TH2 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(TM\right)\)

+ TH3 : \(\left\{{}\begin{matrix}x-2y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\) (TM )

+ TH4 : \(\left\{{}\begin{matrix}x-2y=-1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\left(TM\right)\)

Vậy có 4 cặp số (x,y) thỏa mãn yêu cầu bài toán là

( 6 ; 3 ) ; ( 2 ; 1 ) ; ( 5 ; 2 ) ; ( 3 ; 2 ).

18 tháng 8 2019

\(4x^2+4y-4xy+5y^2+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2024

Lời giải:

PT $\Leftrightarrow x^2-4xy+(5y^2+2y-3)=0$

Dấu "=" tồn tại nghĩa là pt luôn có nghiệm.

$\Leftrightarrow \Delta'=(2y)^2-(5y^2+2y-3)\geq 0$

$\Leftrightarrow -y^2-2y+3\geq 0$

$\Leftrihgtarrow y^2+2y-3\leq 0$

$\Leftrightarrow (y-1)(y+3)\leq 0$

$\Leftrightarrow -3\leq y\leq 1$

$\Rightarrow y_{\max}=1$

5 tháng 8 2017

Điểm rơi: x=4;y=2;z=4 

\(A=x^2+4xy+4y^2+2z^2=\left(x-2y\right)^2+8xy+2z^2\)

Mà \(xyz=32\Leftrightarrow z^2=\frac{32^2}{x^2y^2}\)

\(VT=\left(x-2y\right)^2+8xy+\frac{2.32^2}{x^2y^2}\ge0+4xy+4xy+\frac{2.32^2}{x^2y^2}\)

Áp dụng AM-GM:

\(4xy+4xy+\frac{2048}{x^2y^2}\ge3\sqrt[3]{32768}=96\)

\(VT\ge96\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=2y\\xy=8\end{cases}}\)....

22 tháng 12 2023

Ta có:

\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)

nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)

Thay \(x=4;y=1\) vào \(P\), ta được:

\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)

\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)

\(=1-1=0\)

Vậy \(P=0\) khi \(x=4;y=1\).

9 tháng 6 2020

Đưa phương trình trên về dạng (x-2y+3)^2+(y+2)^2\(\le0\)

Giải và tìm được x=-7 ; y=-2

Kết luận nghiệm x=-7 và y=-2