Cho tam giác ABC cân tai A các đường trung trực của AB và AC cắt nhau tại O. Lấy D thuộc AB,E thuộc AC sao cho BD=CE. Chứng minh rằng: đường trung trực của DE đi qua
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: O nằm trên đường trung trực của AB
nên OA=OB
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
A) Xét tam giác BEC và tam giác CDB có :
\(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)
\(BC\)chung
\(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )
\(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)
Vậy \(BD=CE\) ( hai canh tương ứng )
B) Xét tam giác DHC và tam giác EHC có :
\(\widehat{EBH}\) =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )
EB=DC ( theo phần a )
\(\widehat{HEB}\)=\(\widehat{CDH}\)=900
\(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)
\(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )
\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )
C) Ta có : AB =AC ( giả thiêt )
Vậy góc A cách đều hai mút B và C
Vậy AH là đường trung trực của BC
d)Xét tam giác BDC và tam giác KDC có :
DK=DB ( GT )
CD ( chung )
suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG )
Mà ta lai có góc EBC = góc BCD theo giả thiết )
\(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)
chúc bạn hok giỏi
a: Xét ΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Gọi giao của 3 đường trung trực trong ΔABC là O
=>OB=OC
Kẻ OK vuông góc BC, OK cắt DE tại M
=>OK là trung trực của BC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>OM vuông góc DE tạiM
Xét ΔOBD và ΔOCE có
OB=OC
góc OBD=góc OCE
BD=CE
=>ΔOBD=ΔOCE
=>OE=OD
=>OM là trung trực của DE