Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $M$ nằm trên trung trực của $BC$ nên $MB=MC$. $M$ nằm trên đường trung trực của $AB$ nên $MA=MB$
$\Rightarrow MA=MB=MC$
Xét tam giác $AMC$ và $AMB$ có:
$AM$ chung
$AC=AB$ (do $ABC$ là tam giác cân tại $A$)
$MB=MC$
$\Rightarrow \triangle AMC=\triangle AMB$ (c.c.c)
$\Rightarrow \widehat{ACM}=\widehat{ABM}$
Hay $\widehat{ECM}=\widehat{ABM}$
Mà $\widehat{ABM}=\widehat{MAB}$ (do tam giác $MAB$ cân tại $M$ vì $MA=MB$)
$\Rightarrow \widehat{ECM}=\widehat{MAB}=\widehat{DAM}$
Xét tam giác $ECM$ và $DAM$ có:
$EC=DA$ (gt)
$\widehat{ECM}=\widehat{DAM}$ (cmt)
$CM=AM$ (cmt)
$\Rightarrow \triangle ECM=\triangle DAM$ (c.g.c)
$\Rightarrow ME=MD$ (đpcm)
Nếu D trùng B thì E sẽ trùng với A
=>Đường trung trực của DE là trung trực của AB
Nếu D trùng A thì E trùng với C
=>Đường ttrung trực của DE là trung trực của AC
Vẽ các đường trung trực của AB,AC, cắt nhau tại O
Gọi H,I lần lượt là trung điểm của AB,AC
=>OI vuông góc AC, OH vuông góc AB
Xét ΔOHB vuông tại H và ΔOIC vuông tại I có
OB=OC
HB=IC
=>ΔOHB=ΔOIC
=>OH=OI
ΔABC đều có O là giao của các đường trung trực
nên AO,BO lần lượt là phân giác của góc BAC, góc ABC
=>góc OAE=góc OBD=30 độ
=>ΔOAE=ΔOBD
=>OD=OE
=>O nằm trên trung trực của DE
=>ĐPCM