K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

quên nữa n thuộc Z tìm n

1:

2n^2+5n-1 chia hết cho 2n-1

=>2n^2-n+6n-3+2 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2}

mà n nguyên

nên n=1 hoặc n=0

2:

a: A=n(n+1)(n+2)

Vì n;n+1;n+2 là 3 số liên tiếp

nên A=n(n+1)(n+2) chia hết cho 3!=6

b: B=(2n-1)[(2n-1)^2-1]

=(2n-1)(2n-2)*2n

=4n(n-1)(2n-1)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>B chia hết cho 8

c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24

3 tháng 7 2023

nhanh dữ, cảm ơn nhé

3 tháng 8 2017

Ta có:

Đáp án C

3 tháng 3 2019

Chọn A

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 1:

\(=-5^{22}+222+[-122-(100-5^{22})+2022]\)

\(=-5^{22}+222-122-100+5^{22}+2022\\ =(-5^{22}+5^{22})+(222-122-100)+2022\\ =0+0+2022=2022\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 2:

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên $2n+1\in \left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

25 tháng 1 2018

10 tháng 3 2019

19 tháng 6 2017

Thực hiện nhân đa thức và thu gọn

2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.

9 tháng 5 2017

Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)

⇔ 2n + 1 ∈ {±1; ±3}

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Cách 2:

Ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.

2 tháng 7 2020

Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

2n^2 - n + 2 2n + 1 n - 1 _ 2n^2 + n -2n + 2 _ -2n - 1 3

2n2 – n + 2 chia hết cho 2n + 1

<=> 3 \(⋮\)( 2n + 1 ) hay ( 2n + 1 ) \(\in\) Ư(3)

<=> 2n + 1 \(\in\) {\(\pm\)1; \(\pm\)3 }

   + 2n + 1 = 1 <=> 2n = 0 <=> n = 0

   + 2n + 1 = -1 <=> 2n = -2 <=> n = -1

   + 2n + 1 = 3 <=> 2n = 2 <=> n = 1

   + 2n + 1 = -3 <=> 2n = -4 <=> n = -2.

Vậy n \(\in\) { -2 ; -1 ; 0 ; 1 }