Tìm số nguyên dương n nhỏ nhất để \(13^n-1\) chia hết cho \(2^{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2000=2^4.5^3\).
Suy ra \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮125\)
mà \(n,n+1,n+2,n+3\)là bốn số tự nhiên liên tiếp nên có tối đa một số trong bốn số đó chia hết cho \(5\), khi đó số đó cũng phải chia hết cho \(125\).
Với \(n+3=125\Leftrightarrow n=122\)thử trực tiếp không thỏa.
Với \(n+2=125\Leftrightarrow n=123\)thử trực tiếp không thỏa.
Với \(n+1=125\Leftrightarrow n=124\)thử trực tiếp không thỏa.
Với \(n=125\)thử lại thỏa mãn.
Vậy \(n=125\)là giá trị cần tìm.
Xét n=1. không có cách nào thêm một chữ số vào đằng sau chữ số 1 để được số chia hết cho 39
Xét n=2. Tồn tại cách thêm hai chữ số vào đằng sau chữ số 2 để được số chia hết cho 39, chẳng hạn 234⋮39
Vậy n=2