Tìm các số tự nhiên abc sao cho 3a+5b=8c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 208 :giả sử số đó là abcd
abcd x 9 = dcba
ta có vì abcd và dcba là số có 4 chữ số
nên ta có : a.10^3 x 9 = d.10^3 => a =1 => d =9
**Xét abcd : vì a =1 => b x 9 < số có 2 chữ số => b=1 hoặc b=0
với b =1 thì 11c9 x 9 = 9c11
vì b=1 =>11c9 x 9 có c x 9 là số bé hơn 2 chữ số => c =1 hoặc c =0 => vô lý
với b = 0 thì 10c9 x 9 = 9c01 =>c = 8
=> 1089 x 9 = 9801
tìm các số tự nhiên a,b biết rằng a,b là các số nguyên tố cùng nhau và 5a+7b/6a+5b=29/28
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Có \(4n-5⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Do \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(-3\right)\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
Ta có bảng sau :
\(2n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Do a, b, c là các số nguyên tố nên a, b, c ∈ {2;3;5;7}.
Nếu trong ba số a, b, c có cả 2 và 5 thì abc ⋮ 10 nên c = 0 loại
Vậy a, b, c ∈ {2;3;7} hoặc {3;5;7}
Trường hợp a, b, c ∈ {2;3;7} ta có: abc ⋮ 2 nên c = 2
Xét các số 372 và 732, chúng đều không chia hết cho 7.
Trường hợp a, b, c ∈ {3;5;7}: Vì a + b + c = 12 nên abc ⋮ 3. Để abc ⋮ 5, ta chọn c = 5.
Xét các số 375 và 735, chỉ có 735 ⋮ 7.
Vậy số phải tìm là 735.
a=1
b=2
c=3
a=3
b=5
c=8