Tính A=(-1).(-1)2.(-1)3.(-1)4. ... . (-1)2010.(-1)2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)
B=2012.A
=>A/B=1/2012
Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.
Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)
= \(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)
= \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
= \(1-\frac{1}{2011}\)
= \(\frac{2010}{2011}\)
*2010/1+2009/2+...+1/2010
=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1
=2011/2+2011/3+..+2011/2010+2011/2011
=2011(1/2+1/3+1/4+...+1/2011)
=> C=2011/1=2011
Ta có:\(1-\frac{2010}{2010}=1-1=0\)
Tích A= (1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010) chứa thừa số \(1-\frac{2010}{2010}=0\)
Vậy tích A=(1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010)=0(Vì có chứa thừa số 0)
A=(-1).(-1)2.(-1)3.(-1)4. ... . (-1)2010.(-1)2011
A = (-1)^1+2+3+...+2011
A = (-1)^2023066
A = 1
A=[(-1).(-1)3.(-1)5. ... .(-1)2011].[(-1)2.(-1)4. ... .(-1)2010]
Ngoặc đầu tiên có 1006 thừa số -1 = 1,ngoặc thứ 2 có 1005 thừa số 1 = 1.
Nên: A= 1.1=1