cho tam giác ABC , đường phân giác của góc C cắt AB tại D .cmr: CD2< CA nhân CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCAB có AE là phân giác
nên CE/EB=CA/AB=CB/AB(1)
Xét ΔCBA có BF là phân giác
nên CF/FA=CB/AB(2)
Từ (1) và (2) suy ra CE/EB=CF/FA
hay FE//AB
A C B D M K x y mình vẽ hình rồi, còn phần chứng minh làm như bạn Trần Hoàng Việt nha!!
a) Ta có : A=900 ; B=300
=> C=180-A-B=180-90-30=60
b) Xét tam giác ACD và MCD ta có :
CD chung (1)
CM=CA (gt)(2)
góc ACD=góc DCM (gt) (3)
Từ (1)(2)(3) =>\(\Delta\)ACD=\(\Delta\)MCD (c.g.c)
c) Ta có :AK//CD; CK//AD => tứ giác ADCK là hình bình hành
=>AK=CD (cặp cạnh tương ứng )
d)Ta có : \(\widehat{BDC}\)=180-30-60:2=1200
\(\widehat{CPA}\)=180-120=60
Do ADCK là hình bình hành nên \(\widehat{CPA}\)=\(\widehat{AKC}\)=\(60^0\)
dịch cái này ra tiếng anh ạ ??