Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N F O E I J x
a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)
=> AM=AN (2 canh tương ứng); ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900
=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN
Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900
Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).
b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC
Tứ giác ANFM là hình vuông => FM=FN
Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ
Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ
=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)
Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ
=> F nằm trên đường phân giác của ^MCN (đpcm).
c) Gọi giao điểm của tia AD và CF là E.
CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450
=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE
=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE
Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)
Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800) (2)
Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).
d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.
\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)
\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)
Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)
(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.
=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2 =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2 2 2 Tương Tự:(1-c+c2) (1-d+d2) > 1+c2d2 2
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K