K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO

a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)

Xét (O) có

\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)

b: Ta có: DI//AB

=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)

mà \(\widehat{CAB}=\widehat{DBC}\)

và \(\widehat{DBC}=\widehat{DOC}\)

nên \(\widehat{CID}=\widehat{COD}\)

=>CIOD là tứ giác nội tiếp

c: ta có: CIOD là tứ giác nội tiếp

=>\(\widehat{OID}=\widehat{OCD}=90^0\)

=>OI\(\perp\)EF tại I

Ta có: ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

=>IE=IF

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 
1 tháng 11 2017

1). Gọi AD cắt (O) tại P khác A

Ta có P C M ^ = P A C ^  (góc tạo bởi tiếp tuyến và dây cung)  = P E M ^ (góc đồng vị do E M ∥ A C );

Suy ra tứ giác ECMP nội tiếp. Từ đó suy ra   M P C ^ = M E C ^ = E C A ^ = C A P ^ ⇒ PM  tiếp xúc (O)

Tương tự PN tiếp xúc (O), suy ra MN tiếp xúc (O) tại P.

22 tháng 5 2018

HÌNH BẠN TỰ VẼ NHA 

a ) 

Xét tứ giác BDCO , co : 

 \(\widehat{B}=90^o\left(gt\right)\)

\(\widehat{C}=90^o\left(gt\right)\)

\(\widehat{B}+\widehat{C}=90^o+90^o=180^o\)

Vay : tứ giác BDCO nội tiếp  ( vì có tổng số đo hai góc đối diện bằng 180)

b ) Xét \(\Delta DCEva\Delta DFC,co:\)

\(\widehat{D}\) là góc chung 

\(\widehat{ECD}=\widehat{EFC}\) ( góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn 1 cung ) 

Do do : \(\Delta DCE~\Delta DFC\left(g-g\right)\)

=> \(\frac{DC}{DE}=\frac{DF}{DC}\)

=> DC= DE . DF 

22 tháng 5 2018

ta có góc DIC=AIF ( đđ )

mà góc AIF = IAB (slt)

gọi H là giao điểm của OD với đường tròn

mà góc IAB = COD ( =1/2 cung CB )( Vì ACB là góc nội tiếp chắn cung CB và COD là góc ở tâm chắn cung CH mà Cung CH= cung BH= cung CB/2)

từ đó suy ra góc CID= COD

suy ra tứ giác CIOD nội tiếp( hai góc bằng nhau cùng chắn cung CD)

suy ra góc OID=OCD=90°

suy ra OI vuông với EF

suy ra I là trung điểm của EF(đpcm)

27 tháng 1 2022

           

27 tháng 1 2022

        

27 tháng 1 2022

a) Vì d là tiếp tuyến của (O) tại A

⇒ OA ⊥ D mà d // d'

⇒ OA ⊥ D tại E

⇒ \(\widehat{AEB}=90^0\)

Suy ra: điểm E thuộc đường tròn đường kính AB           (1)

Ta có:   AF ⊥ BC    ⇒     \(\widehat{AFB}=90^0\)

Suy ra:  điểm F thuộc đường tròn đường kính AB           (2)

Từ (1) và (2):   ⇒    A, B, E, F cùng thuộc đường tròn đường kính AB

Từ đó:   tam giác ABFE nội tiếp

b) Ta có:    \(\widehat{ACB}=\widehat{IAB}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến cùng chắn cung AB )

Lại có:    \(\widehat{ABD}=\widehat{IAB}\) ( so le trong ) 

⇒ \(\widehat{ABD}=\widehat{ACB}\)

Xét △ ABD và △ ACB có:

   \(\widehat{ABD}=\widehat{ACB}\) ( cmt )

   \(\widehat{A}\) chung 

⇒ △ ABD ∼ △ ACB    ( g - g )

Từ đó:   \(\dfrac{AB}{AD}=\dfrac{AC}{AB}\Leftrightarrow AB^2=AC.AD\)   ( đpcm )

c) Theo câu a, ta có: tam giác ABFE nội tiếp

⇒ \(\widehat{ABE}=\widehat{AFE}\)     ( 2 góc nội tiếp cùng chắn cung AE )

Mà   \(\widehat{ABE}=\widehat{ACB}\Rightarrow\widehat{AFE}=\widehat{ACB}\)      (3) 

Ta có:  M là trung điểm của AB và N là trung điểm của BC

⇒ MN là đường trung bình △ ABC

⇒  MN // AC

⇒     \(\widehat{BMN}=\widehat{ACB}\)   ( đồng vị )      (4)

Từ (3) và (4):     \(\widehat{AFE}=\widehat{BNM}\)

Mà \(\widehat{AFE}+\widehat{NFE}=90^0\Rightarrow\widehat{BNM}+\widehat{NFE}=90^0\)

Gọi H là giao điểm của EF và MN

⇒ \(\widehat{FNH}=90^0\)

⇒   EF ⊥  MN   ( đpcm )

a)Xét tứ giác MBOC có 

\(\widehat{OBM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OBM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MBOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)