Cho a, b thuộc Z và a - b chia hết cho 7. Chứng minh rằng: 4a + 3b chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do (a - b) ⋮ 7 ⇒ a - b = 7k (k ∈ ℕ)
⇒ a = 7k + b
⇒ 4a + 3b = 4.(7k + b) + 3b
= 28k + 4b + 3b
= 28k + 7b
= 7.(4k + b) ⋮ 7
Vậy (4a + 3b) ⋮ 7
4a+3b
=(4+3).ab
=7.ab
chia hết cho 7 vì 7 chia hết cho 7 và a-b chia hết cho 7
a - b chia hết cho 7 => 4(a - b)chia hết cho 7.
= (4a + 3b) + 4(a - b)
= 4a + 3b + 4a - 4b
= (4a - 4a) + (3b + 4b)
= 7b chia hết cho 7.
=> (4a + 3b) + 4(a - b) chia hết cho 7.
Mà 4(a - b) chia hết cho 7
=> 4a + 3b chia hết cho 7 (ĐPCM)
Ta có: a-b chia hết cho 7
=>4.(a-b) chia hết cho 7
=>4a-4b chia hết cho 7
=>4a-4b+7b chia hết cho 7
=>4a+3b chia hết cho 7
=>ĐPCM
a - b chia hết cho 7 => 4(a - b)chia hết cho 7.
= (4a + 3b) + 4(a - b)
= 4a + 3b + 4a - 4b
= (4a - 4a) + (3b + 4b)
= 7b chia hết cho 7.
=> (4a + 3b) + 4(a - b) chia hết cho 7.
Mà 4(a - b) chia hết cho 7
=> 4a + 3b chia hết cho 7 (ĐPCM)
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 4 a + 3 b = 7 a − 3 a + 3 b = 7 a − 3 a − b Áp dụng tính chất chia hết của tích và tổng ta có: 7 ⋮ 7 a − b ⋮ 7 ⇒ 7 a ⋮ 7 3 a − b ⋮ 7 ⇒ 7 a − 3 a − b ⋮ 7 ⇒ 4 a + 3 b ⋮ 7 Vậy 4a+3b chia hết cho 7. |
TA CÓ \(\left(a-b\right)⋮7\)
\(\Rightarrow3\left(a-b\right)⋮7\)
\(\Rightarrow\left(3a-3b\right)⋮7\)
Mà nếu \(\left(4a+3b\right)⋮7\)
thì \(\left(4a+3b\right)+\left(3a-3b\right)⋮7\)
\(\Rightarrow\left(4a+3b+3a-3b\right)⋮7\)
\(\Rightarrow7a⋮7\left(đpcm\right)\)
Vậy nếu \(\left(a-b\right)⋮7\)thì \(\left(4a+3b\right)⋮7\)
Cảm ơn bạn nhiều!