Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chung minh rang ( a^2+b^2)(x^2+y^2) lon hon hoac bang (ax+by)^2
giúp vớiiiiiiiiiiiiiiiiiiiiiiiii
Cái này là BĐT Bunhiacopxki đó bạn
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2y^2+b^2x^2+a^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow b^2x^2+a^2y^2\ge2axby\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) ( luôn đúng )
\(\Rightarrowđpcm\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2axby\ge0\)
\(\Leftrightarrow a^2y^2+b^2y^2-2axby\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) ( bất đẳng thức luôn đúng )
Vậy ................
Cái này là BĐT Bunhiacopxki đó bạn
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2y^2+b^2x^2+a^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow b^2x^2+a^2y^2\ge2axby\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) ( luôn đúng )
\(\Rightarrowđpcm\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2axby\ge0\)
\(\Leftrightarrow a^2y^2+b^2y^2-2axby\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) ( bất đẳng thức luôn đúng )
Vậy ................